Table of Contents

1 INTRODUCTION

1.1 IDENTIFICATION OF THE PROPONENT... 1-1
1.2 PROJECT OVERVIEW ... 1-2
1.3 COMPARISON OF LNG IMPORT AND LNG EXPORT ... 1-6
1.4 PROJECT PURPOSE .. 1-6
1.5 NEED FOR THE PROJECT .. 1-6
1.6 REGULATORY AND PLANNING CONTEXT ... 1-10
 1.6.1 Federal Environmental Legislation ... 1-10
 1.6.2 Provincial Environmental Legislation ... 1-11
 1.6.3 Municipal Environmental Legislation .. 1-12
1.7 GUIDELINES, POLICIES AND CODES ... 1-13
1.8 EXISTING AUTHORIZATIONS AND STATUS OF REGULATORY PERMITTING 1-13
1.9 APPROACH .. 1-16
1.10 SPATIAL AND TEMPORAL BOUNDARIES .. 1-16
1.11 STRUCTURE OF THE DOCUMENT .. 1-17

2 PROJECT DESCRIPTION

2.1 PROJECT OVERVIEW ... 2-1
2.2 PROJECT ACTIVITIES ... 2-1
 2.2.1 Completed Works... 2-1
 2.2.2 Continued Construction .. 2-4
 2.2.3 Commissioning ... 2-5
 2.2.4 Operation .. 2-6
 2.2.5 Decommissioning ... 2-6
 2.2.6 Project Schedule ... 2-6
2.3 LAND BASED FACILITIES .. 2-6
 2.3.1 Gas Supply.. 2-9
 2.3.2 Pre-Treatment Plant ... 2-9
 2.3.3 Liquefaction Plant ... 2-10
 2.3.4 Heavy Hydrocarbon Liquid Handling .. 2-10
 2.3.5 LNG Tank and Marine Vessel Loading ... 2-11
 2.3.6 Boil-off Gas System .. 2-11
 2.3.7 Auxiliary Ammonia Refrigeration Plant .. 2-11
 2.3.8 Waste Heat Recovery and Steam Plant .. 2-11
 2.3.9 Electrical Power ... 2-12
 2.3.10 Utilities .. 2-12
2.4 MARINE TERMINAL ... 2-14
2.5 EMISSIONS AND WASTE DISCHARGES .. 2-16
 2.5.1 Air Emissions ... 2-17
 2.5.2 Wastewater Discharges .. 2-18
 2.5.3 Noise Emissions .. 2-19
 2.5.4 Lighting .. 2-20
2.5.5 Material and Hazardous Waste ... 2-20
2.6 HAZARDOUS MATERIALS ... 2-20
2.7 TECHNOLOGICAL RISK ASSESSMENT ... 2-22
 2.7.1 Methodology and Analysis .. 2-23
2.8 ENVIRONMENTAL AND SAFETY PROTECTION SYSTEMS 2-28
 2.8.1 Equipment Inspection and Maintenance .. 2-28
 2.8.2 Hazard Mitigation and Fire Protection Measures 2-29
 2.8.3 GHG Management Plan ... 2-31
 2.8.4 Flare Emissions Management ... 2-32
2.9 EMPLOYMENT AND ECONOMIC CONSIDERATIONS 2-33
2.10 HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT 2-34
2.11 A DESCRIPTION OF ALTERNATIVES TO THE PROJECT 2-36
 2.11.1 Project Does Not Proceed .. 2-36
 2.11.2 Alternative Locations .. 2-36
2.12 OTHER METHODS FOR CARRYING OUT THE PROJECT 2-37
 2.12.1 Product Transport ... 2-37
 2.12.2 Site Layout ... 2-37
 2.12.3 LNG Storage Tanks .. 2-38
 2.12.4 Removal of Acid Gases (CO₂ and H₂S) .. 2-38
 2.12.5 Cooling System .. 2-40
 2.12.6 Refrigeration Circuit .. 2-42
 2.12.7 Comparison of Technologies ... 2-48
 2.12.8 Driving Compressors ... 2-49
 2.12.9 Boil-Off Gas Recovery .. 2-49
 2.12.10 Utilities and Infrastructure ... 2-50
2.13 SUMMARY ... 2-50

3 PUBLIC CONSULTATION AND FIRST NATIONS ENGAGEMENT 3-1
 3.1 PUBLIC CONSULTATION .. 3-1
 3.1.1 Preliminary Consultations .. 3-1
 3.1.2 Project Internet Site ... 3-2
 3.1.3 Stakeholder Meetings and Outreach .. 3-2
 3.1.4 Media Coverage .. 3-3
 3.1.5 Ongoing Consultations .. 3-4
 3.1.6 Comments Received .. 3-4
 3.2 FIRST NATIONS ENGAGEMENT .. 3-6

4 OVERVIEW OF THE ENVIRONMENT .. 4-1
 4.1 SETTING THE SCENE .. 4-1
 4.2 PHYSICAL ENVIRONMENT ... 4-1
 4.2.1 Physiography, Surficial and Bedrock Geology 4-1
 4.2.2 Acid Rock Drainage Potential ... 4-2
 4.2.3 Hydrogeology and Water Quality .. 4-2
 4.2.3.1 Peat and Organic Deposits ... 4-2
 4.2.3.2 Glacial Till ... 4-4
4.2.3.3 Cumberland Group ... 4-4
4.2.4 Water Sources ... 4-4
4.2.5 Climate .. 4-7
 4.2.5.1 General Climate and Weather Patterns .. 4-7
 4.2.5.2 Temperature Normals and Extremes .. 4-9
 4.2.5.3 Precipitation Normals and Extremes ... 4-10
 4.2.5.4 Wind Normals and Extremes ... 4-10
 4.2.5.5 Adverse Weather ... 4-11
4.2.6 Ambient Air Quality ... 4-12
4.2.7 Acoustic Environment .. 4-12
4.2.8 Physical Oceanography ... 4-16
 4.2.8.1 Bathymetry .. 4-16
 4.2.8.2 Temperature and Salinity ... 4-17
 4.2.8.3 Tides, Storm Surge and Sea Level Rise .. 4-17
 4.2.8.4 Winds .. 4-19
 4.2.8.5 Waves .. 4-24
 4.2.8.6 Ice Cover .. 4-26
4.3 ECOLOGICAL ENVIRONMENT: TERRESTRIAL ... 4-28
 4.3.1 Habitat and Vegetation ... 4-28
 4.3.1.1 Wetlands .. 4-28
 4.3.2 Fauna and Flora .. 4-31
 4.3.2.1 Freshwater Fish and Fish Habitat .. 4-31
 4.3.3 Mammals .. 4-34
 4.3.4 Reptiles and Amphibians ... 4-36
 4.3.5 Birds ... 4-37
 4.3.5.1 Breeding Birds .. 4-37
 4.3.5.2 Rare and Sensitive Birds ... 4-38
 4.3.6 Plants .. 4-39
 4.3.7 Species at Risk (SAR) ... 4-40
 4.3.7.1 Terrestrial SAR ... 4-40
 4.3.7.2 Marine SAR ... 4-41
4.4 ECOLOGICAL ENVIRONMENT: MARINE ... 4-43
 4.4.1 Marine Ecosystem .. 4-43
 4.4.2 Marine Water and Sediment Quality ... 4-44
 4.4.2.1 Water Quality .. 4-44
 4.4.2.2 Sediment Quality .. 4-44
 4.4.2.3 Plankton ... 4-46
 4.4.2.4 Ichthyoplankton ... 4-46
 4.4.3 Marine Benthic Habitat and Communities .. 4-48
 4.4.3.1 Sediments .. 4-49
 4.4.3.2 Intertidal .. 4-49
 4.4.3.3 Subtidal ... 4-49
 4.4.4 Marine and Estuarine Fish and Fish Habitat ... 4-50
 4.4.4.1 Demersal and Benthic Fish ... 4-50
 4.4.4.2 Pelagic Fish ... 4-53
4.4.4.3 Invertebrates ... 4-54
4.4.5 Coastal and Water Associated Birds .. 4-54
4.4.5.1 Seabirds ... 4-54
4.4.5.2 Coastal Waterfowl and Divers .. 4-57
4.4.6 Marine Mammals .. 4-57
4.4.6.1 Cetaceans .. 4-59
4.4.6.2 Pinnipeds ... 4-59
4.4.6.3 Sea Turtles .. 4-59
4.5 SOCIO-ECONOMIC ENVIRONMENT .. 4-63
4.5.1 Key Settlements, Land Use, Community Services and Infrastructure .. 4-63
4.5.1.1 Recreation and Entertainment .. 4-66
4.5.1.2 Local Emergency Response Services 4-66
4.5.1.3 Medical Services and Hospitals 4-66
4.5.1.4 Police ... 4-68
4.5.1.5 Social and Community Support Services 4-68
4.5.1.6 Accommodation and Related Services 4-68
4.5.1.7 Transportation Infrastructure .. 4-68
4.5.2 Economic Development .. 4-72
4.5.2.1 Employment and Income ... 4-72
4.5.2.2 Business ... 4-72
4.5.3 Marine Navigation .. 4-73
4.5.3.1 Safety of LNG Operations .. 4-74
4.5.3.2 Marine LNG Vessels .. 4-74
4.5.3.3 Ocean Passage into Canadian Waters 4-75
4.5.4 Fisheries, Aquaculture and Marine Harvesting 4-76
4.5.4.1 Commercial Fishery .. 4-76
4.5.4.2 Landings and Value .. 4-78
4.5.4.3 Fishing Effort .. 4-89
4.5.4.4 Recreational Fishery .. 4-92
4.5.4.5 Aquaculture .. 4-92
4.5.5 First Nations Land and Resource Use 4-94
4.5.6 Archaeological and Heritage Resources 4-94
4.5.6.1 Archaeological Potential – Pre-Contact 4-96
4.5.6.2 Archaeological Potential – Historic 4-96
4.5.6.3 Field Survey ... 4-96
5 EFFECTS ASSESSMENT METHODOLOGY .. 5-1
5.1 OVERVIEW AND APPROACH .. 5-1
5.2 STEPS IN THE ASSESSMENT PROCESS 5-2
5.2.1 Scoping: Definition of VECs and Socio-Economic Issues 5-2
5.2.2 Defining Boundaries and Thresholds 5-9
5.2.3 Analysis, Mitigation and Evaluation 5-13
5.2.4 Residual Effects Prediction .. 5-14
5.2.5 Monitoring and Follow Up .. 5-14
5.3 CUMULATIVE EFFECTS .. 5-15
5.3.1 Identifying Projects/Activities ... 5-15
5.4 EFFECTS OF THE ENVIRONMENT ON THE PROJECT 5-17

6 ENVIRONMENTAL EFFECTS ASSESSMENT ... 6-1

6.1 PHYSICAL ENVIRONMENT ... 6-1
 6.1.1 Groundwater .. 6-1
 6.1.1.1 Boundaries and Threshold ... 6-1
 6.1.1.2 Interactions and Potential Effects 6-4
 6.1.1.3 Mitigation .. 6-5
 6.1.1.4 Potential Residual Effects ... 6-6
 6.1.1.5 Monitoring and Follow-up .. 6-6
 6.1.2 Surface Water .. 6-6
 6.1.2.1 Boundaries and Threshold ... 6-6
 6.1.2.2 Interactions and Potential Effects 6-10
 6.1.2.3 Mitigation .. 6-11
 6.1.2.4 Potential Residual Effects ... 6-12
 6.1.2.5 Monitoring and Follow-up .. 6-13
 6.1.3 Climate .. 6-13
 6.1.3.1 Boundaries and Threshold ... 6-15
 6.1.3.2 Interactions and Potential Effects 6-16
 6.1.3.3 Potential Residual Effects ... 6-22
 6.1.3.4 Monitoring and Follow-Up .. 6-22
 6.1.4 Air Quality ... 6-22
 6.1.4.1 Boundaries and Threshold ... 6-22
 6.1.4.2 Interactions and Potential Effects 6-26
 6.1.4.3 Mitigation .. 6-32
 6.1.4.4 Potential Residual Effects ... 6-33
 6.1.4.5 Monitoring and Follow-up .. 6-35
 6.1.5 Acoustic Environment ... 6-36
 6.1.5.1 Boundaries and Threshold ... 6-36
 6.1.5.2 Interactions and Potential Effects 6-39
 6.1.5.3 Mitigation .. 6-43
 6.1.5.4 Potential Residual Effects ... 6-43
 6.1.5.5 Monitoring and Follow-Up .. 6-43
 6.2 ECOLOGICAL ENVIRONMENT ... 6-45
 6.2.1 Terrestrial Habitat .. 6-45
 6.2.1.1 Boundaries and Threshold ... 6-45
 6.2.1.2 Interactions and Potential Effects 6-47
 6.2.1.3 Mitigation .. 6-48
 6.2.1.4 Potential Residual Effects ... 6-49
 6.2.1.5 Monitoring and Follow-up .. 6-49
 6.2.2 Terrestrial Fauna ... 6-49
 6.2.2.1 Boundaries and Threshold ... 6-51
 6.2.2.2 Interactions and Potential Effects 6-53
 6.2.2.3 Mitigation .. 6-55
 6.2.2.4 Potential Residual Effects ... 6-56
6.2.2.5 Monitoring and Follow-up .. 6-56
6.2.3 Freshwater Fish and Fish Habitat .. 6-57
 6.2.3.1 Boundaries and Threshold ... 6-57
 6.2.3.2 Interactions and Potential Effects .. 6-60
 6.2.3.3 Mitigation ... 6-62
 6.2.3.4 Potential Residual Effects .. 6-62
 6.2.3.5 Monitoring and Follow-up ... 6-62
6.2.4 Species at Risk .. 6-64
 6.2.4.1 Boundaries and Thresholds .. 6-64
 6.2.4.2 Interactions and Potential Effects .. 6-66
 6.2.4.3 Mitigation ... 6-68
 6.2.4.4 Potential Residual Effects .. 6-69
 6.2.4.5 Monitoring and Follow-Up .. 6-69
6.3 ECOLOGICAL ENVIRONMENT: MARINE ... 6-71
6.4 SOCIO-ECONOMIC ENVIRONMENT .. 6-71
 6.4.1 Key Settlements, Land Use, Community Services and Infrastructure................. 6-74
 6.4.1.1 Boundaries and Threshold .. 6-74
 6.4.1.2 Interactions and Potential Effects ... 6-75
 6.4.1.3 Mitigation .. 6-77
 6.4.1.4 Potential Residual Effects ... 6-77
 6.4.1.5 Monitoring and Follow-Up .. 6-78
 6.4.2 Economic Development ... 6-78
 6.4.2.1 Boundaries and Threshold .. 6-78
 6.4.2.2 Interactions and Potential Effects ... 6-79
 6.4.2.3 Mitigation .. 6-80
 6.4.2.4 Potential Residual Effects ... 6-80
 6.4.2.5 Monitoring and Follow-Up .. 6-80
 6.4.3 Marine Navigation .. 6-80
 6.4.3.1 Boundaries and Threshold .. 6-80
 6.4.3.2 Interactions and Potential Effects ... 6-83
 6.4.3.3 Mitigation .. 6-83
 6.4.3.4 Potential Residual Effects ... 6-84
 6.4.3.5 Monitoring and Follow-Up .. 6-84
 6.4.4 Fisheries, Aquaculture and Marine Harvesting .. 6-84
 6.4.4.1 Boundaries and Threshold .. 6-84
 6.4.4.2 Interactions and Potential Effects ... 6-85
 6.4.4.3 Mitigation .. 6-86
 6.4.4.4 Potential Residual Effects ... 6-87
 6.4.4.5 Monitoring and Follow-Up .. 6-87
 6.4.5 First Nations Land and Resource Use ... 6-87
 6.4.5.1 Boundaries and Threshold .. 6-87
 6.4.5.2 Interactions and Potential Effects ... 6-88
 6.4.5.3 Mitigation .. 6-88
 6.4.5.4 Potential Residual Effects ... 6-88
 6.4.5.5 Monitoring and Follow-Up .. 6-89
6.4.6 Archaeology ... 6-89
 6.4.6.1 Boundaries and Threshold ... 6-89
 6.4.6.2 Interactions and Potential Effects ... 6-89
 6.4.6.3 Mitigation ... 6-89
 6.4.6.4 Potential Residual Effects .. 6-89
 6.4.6.5 Monitoring and Follow-up .. 6-90
6.5 CUMULATIVE EFFECTS ... 6-90
 6.5.1 Cumulative Interactions and Potential Effects on VECs 6-90
6.6 EFFECTS OF THE ENVIRONMENT ON THE PROJECT .. 6-98
 6.6.1 Extreme Weather ... 6-98
 6.6.2 Sea Ice .. 6-99
 6.6.3 Climate Change and Sea Level Rise ... 6-99
 6.6.4 Seismic Activity .. 6-100
 6.6.5 Security ... 6-100

7 SUMMARY AND CONCLUSIONS .. 7-1

8 REFERENCES ... 8-3
 8.1 ACTS, STANDARDS AND REGULATIONS .. 8-3
 8.2 REFERENCES ... 8-4
 8.3 PERSONAL COMMUNICATIONS .. 8-15

List of Tables
Table 1-1: Key Elements of the Bear Head LNG Import vs. Export Facilities1-9
Table 1-2: Pertinent Canadian Federal Legislation ...1-11
Table 1-3: Pertinent Nova Scotian Provincial Legislation ...1-12
Table 1-4: Existing Authorizations ..1-14
Table 1-5: Concordance with Environmental Assessment Regulations made under Section 49 of the Environment Act ...1-18
Table 2-1: Overview of Bear Head LNG Project ...2-4
Table 2-2: Average feed gas composition ...2-10
Table 2-3: Example Dimensions of LNG Vessels ...2-15
Table 2-4: Routine Project Emissions/Effluents ...2-16
Table 2-5: Anticipated Hazardous Materials Present at the Plant2-21
Table 2-6: Anticipated Economic Impacts Resulting from Construction of Bear Head LNG2-34
Table 2-7: Comparison of Amine Systems for the Chemical Absorption of Acid Gases ..2-39
Table 2-8: Other Methods Available for Acid Gas Removal2-40
Table 2-9: Cooling Methods Comparison ..2-42
Table 3-1: Stakeholder Organization Meetings ..3-3
Table 3-2: Comments Received During Public Consultation3-5
Table 3-3: Engagement with First Nations ...3-7
Table 4-1: Physical Observations and Water Quality Measurements at the Bear Head LNG Site, Point Tupper, Nova Scotia (2014) ..4-5
Table 4-2: Mean Monthly and Annual Site Runoff (mm) ...4-7
Table 4-3: Annual Average Climate Data ... 4-9
Table 4-4: Monthly Average Relative Humidity ... 4-10
Table 4-5: Annual Average Precipitation Data ... 4-10
Table 4-6: Summary of Ambient Air Quality Monitoring Results in Port Hawkesbury 4-13
Table 4-7: Summary of Industrial Atmospheric Emissions in the Study Area 4-14
Table 4-8: Ambient Sound Levels at the LNG Project Site, October 1, 2014 4-14
Table 4-9: Ambient Sound Levels at Residential Monitoring Sites, October 1–2, 2014 4-14
Table 4-10: Yearly Extreme Hsig and Wind Speed, at AES40 grid point 5294 (Scotian Shelf, 45 N; 60 50’ W). 4-25
Table 4-11: Seasonal Extreme Hsig and Wind Speed – 3 Month Running Period Centered on Each Month, at AES40 grid point 5394 (Scotian Shelf, 45 N; 60 50’ W)² ... 4-25
Table 4-12: Extreme wave and wind statistics for Bear Head LNG Terminal Site 4-26
Table 4-13: Species Identified in Wetlands through Field Survey in 2004 (JWEL, 2004a) 4-29
Table 4-14: Present Status of Wetlands through Field Survey in May 2014. 4-30
Table 4-15: Mammals Recorded at or near Bear Head site (JWEL, 2004a) 4-35
Table 4-16: Reptiles and Amphibians Found at Bear Head site (JWEL, 2004a) 4-36
Table 4-17: Terrestrial Rare Species List ... 4-41
Table 4-18: Characteristics of Federally listed marine & estuarine fish species at risk 4-42
Table 4-19: Sediment Quality at Bear Head and Strait of Canso, 2003. 4-45
Table 4-20: Monthly Distribution of Fish and Invertebrate Larvae by Species on the Scotian Shelf, From the Scotian Shelf Ichthyoplankton Program (SSIP), 1978-1982 ... 4-48
Table 4-21: Fish Species Observed in Strait of Canso, Inhabitants Bay, Chedabucto Bay Area ... 4-51
Table 4-22: Common and important benthic invertebrate species in Strait of Canso, Inhabitants Bay, Chedabucto Bay Area.......................... 4-53
Table 4-23: Characteristics of Cetacean (dolphins, whales and porpoises) and Seal Species occurring in Eastern Canadian Waters ... 4-61
Table 4-24: Characteristics of sea turtles occurring in Eastern Canadian Waters occurring in Eastern Canadian Waters ... 4-63
Table 4-25: Health Services for the Point Tupper and Port Hawkesbury Area 4-67
Table 4-26: Summary of Nearby Hospitals ... 4-67
Table 4-27: Seasonal Variation in Average Daily Volumes .. 4-69
Table 4-28: Description of Industrial Park Road and Bear Island Road 4-70
Table 4-29: Allowable Weights and Dimensions ... 4-71
Table 4-30: Collision History at Reeves Street Intersection 1998 to 2002 4-71
Table 4-31: Division of Labour in Richmond and Inverness Counties 4-73
Table 4-32: Number of Vessel Movements in Strait of Canso Area 2014 4-74
Table 4-33: Particulars of Bear Head LNG Vessels ... 4-75
Table 4-34: Catch (metric tonnes) and Value ($’000) within Unit Area 4Wd 4-78
Table 4-35: Landings (metric tonnes) and Value ($’000) for Statistical Districts 9, 14 and 15 4-79
Table 4-36: Landings (metric tonnes) and Value ($’000) by Species and Species Group for Districts 9, 14 and 15 ... 4-82
Table 4-37: Number of Licensed Fishing Vessels Registered with Statistical District 9, 14 and 15 by Size Class ... 4-90
Table 4-38: Fishing Effort by Month and Major Species for Management Area 4Wd 4-91
Table 4-39: Major Aquaculture Sites in Chedabucto Bay, Nova Scotia 4-92
Table 5-1: Potential VECs and Socio-economic Issues ... 5-5
Table 5-2: Valued Environmental Components (VECs) Selection Process 5-5
Table 5-3: Project Interactions with Valued Environmental Components (VECs) During Construction and Commissioning ...5-10
Table 5-4: Project Interactions with Valued Environmental Components (VECs) During Operations ...5-11
Table 5-5: Project Interactions with Valued Environmental Components (VECs) During Malfunctions, Accidental Events, and Decommissioning ...5-12
Table 6-1: Potential Environmental Effects Assessment Matrix for Groundwater ..6-7
Table 6-2: CCME Guidelines for the Protection of Aquatic Life ..6-9
Table 6-3: Surface Water Environmental Effects Assessment Matrix ..6-14
Table 6-4: Baseline greenhouse gas emissions for the 3-year construction phase of proposed Project.6-17
Table 6-5: Baseline annual greenhouse gas emissions for operations phase of Proposed Project6-18
Table 6-6: Regional and national GHG emission inventories for 2012, compared to proposed Project annual operation GHG emissions. ...6-19
Table 6-7: Potential Environmental Effects Assessment Matrix for Climate ..6-23
Table 6-8: Nova Scotia Air Quality Standards ..6-24
Table 6-9: Canadian Ambient Air Quality Standards ..6-24
Table 6-10: Comparison of Project’s Emissions with NOx Air Emissions Limits ..6-25
Table 6-11: Estimated Annual Emissions – Proposed Natural Gas Liquefaction Plant (Tonnes/Year) ..6-27
Table 6-12: Summary of Industrial Atmospheric Emissions in the Study Area (2013) ..6-28
Table 6-13: Maximum Predicted Concentrations in Ambient Air for the LNG Plant, including LNG Vessel Hotelling and Background Concentrations at Normal Operation ..6-30
Table 6-14: Maximum Predicted Concentrations in Ambient Air for the LNG Plant with Flaring, including LNG Vessel Hotelling and Background Concentrations at Normal Operation ..6-31
Table 6-15: Potential Environmental Effects Assessment Matrix for Air Quality ..6-34
Table 6-16: Health Canada Approach to Noise Assessment ..6-38
Table 6-17: LNG Facility Construction Sound Levels at Off-Site Receptors ..6-40
Table 6-18: LNG Facility Operation Sound Levels at Site Boundary and Off-Site Receptors ..6-42
Table 6-19: Potential Environmental Effects Assessment Matrix for the Acoustic Environment ..6-44
Table 6-20: Potential Environmental Effects Assessment Matrix for Terrestrial Habitat ..6-50
Table 6-21: Potential Environmental Effects Assessment Matrix for Terrestrial Fauna ..6-58
Table 6-22: Potential Environmental Effects Assessment Matrix for Freshwater Fish and Fish Habitat ..6-63
Table 6-23: Potential Environmental Effects Assessment Matrix for Species at Risk ..6-70
Table 6-24: Potential Environmental Effects Assessment Matrix for Marine Habitat ..6-72
Table 6-25: Potential Environmental Effects Assessment Matrix for Marine Life ..6-73
Table 6-26: Roles of Marine Authorities Within the Strait of Canso ..6-82
List of Figures

Figure 1-1: Bear Head LNG Project Location ... 1-3
Figure 1-2: Aerial Photograph of the Site... 1-4
Figure 1-3: Aerial Photograph of the Project Area .. 1-5
Figure 1-4: Process Flow Diagram Comparison of LNG Import and LNG Export Facilities .. 1-7
Figure 1-5: Site Boundaries and Project Footprint ... 1-8
Figure 2-1: Proposed Project Site Layout .. 2-2
Figure 2-2: Proposed Project Site Layout (3D) ... 2-3
Figure 2-3: Project Schedule ... 2-7
Figure 2-4: Simplified OSMR® Schematic for the Bear Head LNG Project 2-8
Figure 2-5: Waste Heat Recovery and Steam Plant Schematic 2-13
Figure 2-6: LNG Liquefaction Processes .. 2-43
Figure 2-7: Simplified Cascade Process Diagram .. 2-44
Figure 2-8: Schematic Diagram of a Single Mixed Refrigerant Process 2-45
Figure 2-9: Schematic Diagram of a Propane Mixed Refrigerant Process 2-46
Figure 2-10: Relative Efficiencies of the Refrigeration Circuits 2-48
Figure 4-1: Geology of the Surrounding Region ... 4-3
Figure 4-2: Surface Water and Ground Water Features ... 4-6
Figure 4-3: Meteorological Monitoring Stations ... 4-8
Figure 4-4: Windrose Plot for Eddy Point (JWEL, 2004a) ... 4-11
Figure 4-5: Noise Monitoring Stations ... 4-15
Figure 4-6: Bathymetry and coastal features of the study area (JWEL, 2004a) 4-18
Figure 4-7: Winter wind rose (wind speed, direction, and frequency) from Eddy Point (JWEL 2004a) .. 4-20
Figure 4-8: Spring wind rose (wind speed, direction, and frequency) from Eddy Point (JWEL, 2004a) .. 4-21
Figure 4-9: Summer wind rose (wind speed, direction, and frequency) from Eddy Point (JWEL, 2004a) ... 4-22
Figure 4-10: Summer wind rose (wind speed, direction, and frequency) from Eddy Point (JWEL, 2004a) .. 4-23
Figure 4-11: Annual wind rose (wind speed, direction, and frequency) from Eddy Point and the MSC50 wind & wave hindcast dataset (CBCL, 2015) 4-24
Figure 4-12: Annual significant wave height probability and direction, AES40 grid point 5394 (Scotian Shelf, 45 N; 60 50' W) (Source: JWEL, 2004a) 4-26
Figure 4-13: Sample modelled extreme waves (significant wave height) for Chedabucto Bay and terminal location based on MSC50 dataset and MIKE21 model calibrated with current meter observations from the terminal site (Source: CBCL 2015) 4-27
Figure 4-14: Wetlands and Sensitive Terrestrial Species ... 4-32
Figure 4-15: Stream A west of the project footprint, December 22, 2014 4-33
Figure 4-16: Stream B east of the project footprint, May 8, 2014 4-34
Figure 4-17: Benthic Habitat Survey (JWEL, 2004a). .. 4-47
Figure 4-18: View of beach and upper intertidal at jetty location, May 2014. Drainage ditch for site runoff management is in the foreground. ... 4-50
Figure 4-19: Seabirds Colonies .. 4-56
Figure 4-20: Coastal Waterfowl .. 4-58
Figure 4-21: Generalized Whale and Dolphin Concentrations and Migration patterns .. 4-60
Figure 4-22: Development Features ... 4-65
Figure 4-23: Marine Navigation ... 4-77
Figure 4-24: Groundfish Catches (2010-2013) ... 4-81
Figure 4-25: Pelagic and Estuarine Catches (2010-2013) ... 4-84
Figure 4-26: Location of Bluefin Tuna Catches from logbook records, 2000-2009* 4-85
Figure 4-27: Shellfish Catches (2010-2013) ... 4-86
Figure 4-28: Lobster Fishing Areas and Sampling Areas for Research Studies (Tremblay et al. 2012) 4-87
Figure 4-29: Fishing Effort (Number of traps hauls per 1 minute grid) for Snow Crab from Logbooks in 2013. 4-88
Figure 4-30: Annual Effort (’000 hours) Fishing for Shrimp in 2012 ... 4-89
Figure 4-31: Aquaculture Leases ... 4-93
Figure 4-32: Archaeological Sites ... 4-95
Figure 5-1: The Environmental Assessment Process ... 5-3

Appendices

A: Updated Permitting Documentation
B: Technological Risk Assessment
C: Metocean Study
D: Flora and Fauna Data
E: ACCDC Data Report
F: Archaeological Assessment
G: Air Quality Assessment
H: Noise Assessment
I: Mi’Kmaq Ecological Knowledge Study
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>ACCDC</td>
<td>Atlantic Canada Conservation Data Centre</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>BACT</td>
<td>Best Available Control Technologies</td>
</tr>
<tr>
<td>BOG</td>
<td>Boil off Gas</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>Ethane</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>Propane</td>
</tr>
<tr>
<td>CAAQS</td>
<td>Canadian Ambient Air Quality Standards</td>
</tr>
<tr>
<td>CCG</td>
<td>Canadian Coast Guard</td>
</tr>
<tr>
<td>CGGT</td>
<td>Combined Cycle Gas Turbines</td>
</tr>
<tr>
<td>CCME</td>
<td>Canadian Council of Ministers of the Environment</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td>CEAA</td>
<td>Canadian Environmental Assessment Act</td>
</tr>
<tr>
<td>CEPA</td>
<td>Canada Environment Protection Act</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Methane</td>
</tr>
<tr>
<td>CHB</td>
<td>Community Health Boards</td>
</tr>
<tr>
<td>CIP</td>
<td>Calling in Point</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed Natural Gas</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>COS</td>
<td>Carbonyl Sulphide</td>
</tr>
<tr>
<td>COSEWIC</td>
<td>Canadian Committee on the Status of Endangered Wildlife in Canada</td>
</tr>
<tr>
<td>CS$_2$</td>
<td>Carbon Disulphide</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Standards Association</td>
</tr>
<tr>
<td>DFO</td>
<td>Fisheries and Oceans Canada</td>
</tr>
<tr>
<td>DIM</td>
<td>Direct Inspection and Maintenance</td>
</tr>
<tr>
<td>DMR</td>
<td>Duel Mixed Refrigerant</td>
</tr>
<tr>
<td>ECREG</td>
<td>Eastern Canada Vessel Traffic Services Zone Requirements</td>
</tr>
<tr>
<td>EMO</td>
<td>Emergency Management Office</td>
</tr>
<tr>
<td>EMP</td>
<td>Environmental Management Plan</td>
</tr>
<tr>
<td>ENGO</td>
<td>Environmental Non-Governmental Organizations</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPP</td>
<td>Environmental Protection Plan</td>
</tr>
<tr>
<td>ESA</td>
<td>Environmental Site Assessment</td>
</tr>
<tr>
<td>FEED</td>
<td>Front End Engineering Design</td>
</tr>
<tr>
<td>FWAL</td>
<td>Freshwater Aquatic Life</td>
</tr>
<tr>
<td>GASHA</td>
<td>Guysborough Antigonish Strait Health Authority</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gas</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>Hydrogen Sulfur</td>
</tr>
<tr>
<td>Ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>HSE</td>
<td>Health, safety and Environment</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organizations</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Fine Particulates</td>
</tr>
<tr>
<td>POL</td>
<td>Petroleum, Oil and Lubricants</td>
</tr>
<tr>
<td>RBCA</td>
<td>Risk Based Corrective Action</td>
</tr>
<tr>
<td>RBSL</td>
<td>Risk Based Screening Level</td>
</tr>
<tr>
<td>SAR</td>
<td>Species at Risk</td>
</tr>
<tr>
<td>SARA</td>
<td>Species at Risk Act</td>
</tr>
<tr>
<td>SCGT</td>
<td>Single Cycle Gas Turbine</td>
</tr>
<tr>
<td>SIGTTO</td>
<td>Society of International Gas Tanker and Terminal Operators</td>
</tr>
<tr>
<td>SIS</td>
<td>Safety Instrument System</td>
</tr>
<tr>
<td>SMR</td>
<td>Single Mixed Refrigerant</td>
</tr>
<tr>
<td>SO$_x$</td>
<td>Sulphur Oxide</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Sulphur Dioxide</td>
</tr>
<tr>
<td>SOLAS</td>
<td>International Convention for Safety of Life at Sea</td>
</tr>
<tr>
<td>SSIP</td>
<td>Scotian Shelf Ichthyoplankton Program</td>
</tr>
<tr>
<td>TDC</td>
<td>Transportation Development Centre</td>
</tr>
<tr>
<td>TRC</td>
<td>Technical Review Committee</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>VEC</td>
<td>Valued Ecosystem Component</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>VTS</td>
<td>Vessel Traffic Services</td>
</tr>
<tr>
<td>WHMIS</td>
<td>Workplace Hazardous Materials Information System</td>
</tr>
<tr>
<td>WHR</td>
<td>Waste Heat Recovery</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>EQL</th>
<th>CCME ISQG – PEL</th>
<th>ODCA</th>
<th>Bear Head</th>
<th>Strait of Canso¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>mg/kg</td>
<td>0.025</td>
<td></td>
<td></td>
<td>All <0.025</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>mg/kg</td>
<td>0.025</td>
<td></td>
<td></td>
<td>All <0.025</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>mg/kg</td>
<td>0.025</td>
<td></td>
<td></td>
<td>All <0.025</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>mg/kg</td>
<td>0.05</td>
<td></td>
<td></td>
<td>All <0.05</td>
<td></td>
</tr>
<tr>
<td>PCDD/Fs²</td>
<td>pg/g</td>
<td>0.85-21.5</td>
<td></td>
<td></td>
<td>0.31-0.41</td>
<td></td>
</tr>
</tbody>
</table>

¹Stewart and White 2001
²Pesticides, PAHs, and PCDD/Fs are grouped to simplify table
EQL = Estimated Quantitation Limit Calibration
CCME = Canadian Council of Ministers of Environment
ISQG = Interim Sediment Quality Guideline
PEL = Probable Effects Limit
ODCA = Ocean Disposal Chemistry Analysis

4.4.2.3 Plankton

Plankton includes a diverse group of organisms that are linked by their reliance on water column properties and availability of sunlight and nutrients. They live in the water column and are transported by water movements and other physical processes such as stratification, mixing and nutrient exchange. Plankton includes bacterioplankton, phytoplankton, zooplankton and ichthyoplankton (fish larvae and eggs). Their concentration and diversity vary markedly over both temporal and spatial scales as a consequence of a variety of physical, chemical and biological factors. Bacterioplankton are an important group that are rarely studied in coastal waters; they are one of the most important groups overall, forming, together with phytoplankton, the base of the marine ecosystem food chain and accounting for a large proportion of planktonic biomass in the ocean as a whole.

4.4.2.4 Ichthyoplankton

The majority of fish in Nova Scotia coastal waters including Chedabucto Bay and the Strait of Canso reproduce through the release of eggs and larvae, which spend some time in the water column during early development. Comparatively little information exists on the temporal and spatial distribution of fish eggs and larvae in the inshore waters (Chedabucto Bay). On the Scotian Shelf, the greatest abundance occurs from March to June and is lowest during the winter months, December to February (Shackell and Frank, 2000; Breeze et al, 2002) (Table 4-20). Individual species also appear to have multiple, or at least protracted spawning periods (possibly indicating variable contributions from different fish stocks).
Figure 4-17
Benthic Habitat Survey (JWEL, 2004a)

Sediment Sampling Locations
Bathymetry
Bear Head LNG Site Features
Elevation
Underwater Video Transect
Waterbodies
Wetlands

Map Parameters
Projection: Universal Transverse Mercator (UTM)
Datum: NAD83
Zone: 20
Scale: 1:5,000
Project Number: 622560
Date: April 1, 2015

Data Source:
- Canvec (2013) Digital National Topographic System (NTS) topographic dataset for Port Hawkesbury (011F11)
- Site Preparation As-builts, J & T Van Zutphen for Bear Head LNG Corp., April 7, 2006, PN 6143
- Plot Plan, LNG International Limited, March 5, 2015, BH-DG-00-002 Rev C1
On the Scotian Shelf, the eggs and larvae of cod, haddock, pollock, and silver hake are mostly concentrated on the shallow outer banks of the Shelf (Browns, Western, Emerald, Sable Island and Banquereau) (O'Boyle et al, 1984). Fish larvae appeared to be retained on the central and southwestern banks, in particular Sable Island Bank, Western Bank and Browns Bank (O'Boyle et al 1984). Sable Island Bank and Western Bank areas have the highest overall fish larvae diversity and abundance (Shackell and Frank, 2000).

Table 4-20: Monthly Distribution of Fish and Invertebrate Larvae by Species on the Scotian Shelf, From the Scotian Shelf Ichthyoplankton Program (SSIP), 1978-1982

<table>
<thead>
<tr>
<th>Species</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herring</td>
<td></td>
</tr>
<tr>
<td>Cod</td>
<td></td>
</tr>
<tr>
<td>Haddock</td>
<td></td>
</tr>
<tr>
<td>Pollock</td>
<td></td>
</tr>
<tr>
<td>Silver hake</td>
<td></td>
</tr>
<tr>
<td>White hake</td>
<td></td>
</tr>
<tr>
<td>Sand lance</td>
<td></td>
</tr>
<tr>
<td>Mackerel</td>
<td></td>
</tr>
<tr>
<td>Redfish</td>
<td></td>
</tr>
<tr>
<td>Cusk*</td>
<td></td>
</tr>
<tr>
<td>Yellowtail</td>
<td></td>
</tr>
<tr>
<td>N. shrimp</td>
<td></td>
</tr>
<tr>
<td>Lobster</td>
<td></td>
</tr>
<tr>
<td>Crabs</td>
<td></td>
</tr>
<tr>
<td>Scallop</td>
<td></td>
</tr>
</tbody>
</table>

- Represents times of peak larval density
- Represents larval presence

* Cusk larvae were rare to absent

Modified from JWEL, 2004a (which was adapted from Breeze et al 2002)

4.4.3 Marine Benthic Habitat and Communities

The waters of the Strait of Canso and Chedabucto Bay support seaweed and seabed animal communities typical of moderately exposed coastal inlets on the Nova Scotia coast. Information on benthic habitat in the vicinity of the proposed marine terminal was obtained from a drop camera video survey in 2003 to a depth of about 20 m (Figure 4-17). Similar surveys were carried out for the proposed Melford International Terminal at a comparable depth and provided comparable information (AMEC 2008). Deeper softbottom areas typically lack seaweeds and are dominated by animal communities (Tay et al 2010; Parrott et al 2005).
4.4.3.1 Sediments

Characteristic marine benthic communities develop on particular bottom substrates, in combination with other factors such as depth and temperature. Knowledge of the local distribution of sediments can therefore help to determine the types and distribution of benthic organisms and plants. The distribution of sediments in the outer Strait of Canso and in Chedabucto Bay reflects erosion of the coast and the redistribution of fine sediments by wave activity and currents from intertidal and shallow areas to deeper areas of the Strait and the Bay. At the Bear Head LNG site, nearshore sediments consist of a rocky intertidal zone with mixed boulder, cobble, gravel, sand and mud. The coarse substrate extends below the low water mark to depths greater than 10 m where it is replaced on a gradually sloping bottom by silt and clay; this finer sediment forms a veneer over the Strait and fills seabed depressions.

Typical sediments in the footprint of the Bear Head LNG terminal jetty are dominated by gravel and sand fractions. Sediments deeper in the central parts of the Strait of Canso tend to be finer with higher percentages of fine material (silt and clay), typically clayey sandy silt (sand, 11.7%; silt, 62.9%; clay, 23.4%)(Tay et al 2010). A similar general distribution of sediments can be observed in Chedabucto Bay, with the shallower margins of the Bay occupied by coarser sediments (rock, bedrock, gravel and sand), which is replaced by silt and clay in the deeper areas.

4.4.3.2 Intertidal

The marine portion of the Project site is characterized by a cobble beach; kelp and rockweed were observed at the low tide mark (Figure 4-18). Intertidal substrate at the site is typically coarse, consisting of pebbles, cobbles and the occasional boulder. Dominant seaweeds include fucoid species (Fucus vesiculosus, F. evanescens and Ascophyllum nodosum) with A. nodosum occurring in the upper intertidal and F. vesiculosus and F. evanescens in the lower intertidal. Irish moss (Chondrus crispus) occurs in the understorey below dominant seaweed species and fine and filamentous surface-living seaweeds (epiphytes) such as Ceramium sp. and Bonnemaisonia hamifera, as well as diatoms, cover larger algae. Encrusting species such as Corallina officinalis and Lithothamnion sp. are common on rocks, occurring also into the subtidal zones at the Project site. Toothed wrack (Fucus serratus) is common intertidally on the southwest shore of the Strait (AMEC 2008), but was only observed subtidally at the Bear Head site (JWEL, 2004a).

4.4.3.3 Subtidal

The upper subtidal to a depth of about 2 m (e.g., Transects 3 and 6, Figure 4-17) is occupied predominantly by eelgrass (Zostera marina), green algae (Cladophora sp.), and bladder wrack fucoid algae (Fucus serratus). Intertidal snails (the common periwinkle, Littorina littorea) and barnacles (Balanus balanoides) are common and the most frequent species observed (JWEL, 2004a).
Eelgrass and *Littorina* sp. are also dominants in the subtidal zone across the Strait (AMEC, 2008). The zone from 3 to 12 m contains the most diverse community of organisms including: red coralline algae (*Corallina officinalis*); rockweeds (*Fucus* ssp. and *Ascophyllum nodosum*); kelp (*Laminaria* ssp.); red seaweed (*Phyllophora* ssp.); and Irish Moss (*Chondrus crispus*). At depths greater than about 12 m to the limit of the video survey (18.3 m), seaweeds are absent and the bottom is predominantly coarse gravel and cobble with a thin surface layer of finer sediment that is suspended by storms and settles during calmer periods. Animal communities include polychaete worms burrowed in sediments, as well as larger invertebrates including rock and green crabs (*Cancer irroratus* and *Carcinus maenas*), lobster (*Homarus americanus*), sea scallops (*Placopecten magellanicus*) and sea stars (*Asterias* spp. and *Henricia sanguinolenta*) (JWEL, 2004a; Stewart and White, 2001). Deeper mud bottoms below about 20 m and extending to the maximum depth (44 m) at the site support a moderately diverse benthic invertebrate community, dominated in terms of biomass by the brittle star *Ophiura sarsi* and numerically by polychaete worms (Tay et al 2010).

![Image of beach and upper intertidal at jetty location, May 2014. Drainage ditch for site runoff management is in the foreground.](image)

Figure 4-18: View of beach and upper intertidal at jetty location, May 2014. Drainage ditch for site runoff management is in the foreground.

4.4.4 Marine and Estuarine Fish and Fish Habitat

The Strait of Canso and Bear Head LNG site are connected through Chedabucto Bay with the Atlantic Ocean, the Scotian Shelf and the Atlantic Coast of Nova Scotia. Many of the fish and commercial invertebrate species that occur in the study area are shared with the other areas. This is due to the
exchange of water and transport of egg and larval stages, seasonal movements in response to temperature and feeding and breeding requirements, migratory movements and chance occurrences. Coastal waters such as Chedabucto Bay are occupied at times by species that use the local marine areas for only part of the year, including anadromous (e.g., Atlantic salmon) and catadromous fish (e.g., American eel). Pelagic fish such as mackerel and bluefin tuna which migrate through the area to and from the Gulf of St. Lawrence, while others are present virtually year-round. More than 538 species of fish occur in the Atlantic Ocean off the East Coast of Canada (Scott and Scott 1988, Breeze et al. 2002).

The study area contains many types of marine habitat, which increase its suitability for a large number and a higher diversity of fish species. This overview focuses on some of the more common and important fish and invertebrate species in the area; commonly occurring species observed in the Project area are listed in Tables 4-21 and 4-22.

Table 4-21: Fish Species Observed in Strait of Canso, Inhabitants Bay, Chedabucto Bay Area

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-spine Stickleback (B)</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>Four-spine Stickleback (B)</td>
<td>Apeltes quadracus</td>
</tr>
<tr>
<td>Wolfish (D)</td>
<td>Anarhichas ssp</td>
</tr>
<tr>
<td>Winter Flounder (D)</td>
<td>Pseudopleuronectes americanus</td>
</tr>
<tr>
<td>Gaspereau (P)</td>
<td>Alosa pseudoharengus</td>
</tr>
<tr>
<td>Smelt (P)</td>
<td>Osmerus mordax</td>
</tr>
<tr>
<td>Shad (P)</td>
<td>Alosa sapidissima</td>
</tr>
<tr>
<td>Mummichog (B)</td>
<td>Fundulus heteroclitus</td>
</tr>
<tr>
<td>Rock Gunnel (D)</td>
<td>Pholis gunnellus</td>
</tr>
<tr>
<td>Atlantic Cod (B)</td>
<td>Gadus morhua</td>
</tr>
<tr>
<td>Atlantic Herring (P)</td>
<td>Clupea harengus</td>
</tr>
<tr>
<td>Atlantic Mackerel (P)</td>
<td>Scomber scombrus</td>
</tr>
<tr>
<td>Cunner (BP)</td>
<td>Tautogolabrus adspersus</td>
</tr>
<tr>
<td>Snake Blenny (D)</td>
<td>Lumpenus lumpretaeformis</td>
</tr>
<tr>
<td>Arctic Shanny (D)</td>
<td>Stichaeus punctatus</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Smooth Flounder (D)</td>
<td>Liopsetta putnami</td>
</tr>
<tr>
<td>Longhorn Sculpin (D)</td>
<td>Myoxocephalus octodecemspinosus</td>
</tr>
<tr>
<td>Winter Skate (D)</td>
<td>Raja ocellata</td>
</tr>
<tr>
<td>Viviparious Blenny (D)</td>
<td>Zoarces viviparus</td>
</tr>
<tr>
<td>Tom Cod (D)</td>
<td>Microgadus tomcod</td>
</tr>
<tr>
<td>American Plaice (D)</td>
<td>Hypoglossoides platessoides</td>
</tr>
<tr>
<td>Pollock (D)</td>
<td>Pollachius virens</td>
</tr>
<tr>
<td>Wrymouth (D)</td>
<td>Cryptacanthodes maculatus</td>
</tr>
<tr>
<td>Salmon (P)</td>
<td>Salmo salar</td>
</tr>
<tr>
<td>Radiated Shanny (P)</td>
<td>Ulvaria subbifurcata</td>
</tr>
<tr>
<td>Capelin (P)</td>
<td>Mallotus vilosus</td>
</tr>
<tr>
<td>Haddock (D)</td>
<td>Melanogrammus aeglefinus</td>
</tr>
<tr>
<td>Hake (D)</td>
<td>Urophycis ssp</td>
</tr>
<tr>
<td>Redfish (D)</td>
<td>Sebastes fasciatus</td>
</tr>
<tr>
<td>Atlantic Halibut (D)</td>
<td>Hippoglossus hippoglossus</td>
</tr>
<tr>
<td>Yellowtail Flounder (D)</td>
<td>Limanda ferruginea</td>
</tr>
<tr>
<td>Cusk (D)</td>
<td>Brosme brosme</td>
</tr>
<tr>
<td>American Eel (P)</td>
<td>Anguilla rostrata</td>
</tr>
<tr>
<td>P-pelagic; D-demersal; B-benthic (bottom dwelling)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Scott and Scott 1988; Breeze et al. 2002. Table modified from JWEL 2004a.
Table 4-22: Common and important benthic invertebrate species in Strait of Canso, Inhabitants Bay, Chedabucto Bay Area

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Lobster</td>
<td>Homarus americanus</td>
</tr>
<tr>
<td>Sea Scallop</td>
<td>Placopecten magellanicus</td>
</tr>
<tr>
<td>Snow Crab</td>
<td>Chionoecetes opilio</td>
</tr>
<tr>
<td>Rock Crab</td>
<td>Cancer irroratus</td>
</tr>
<tr>
<td>Hermit Crab</td>
<td>Pagurus spp</td>
</tr>
<tr>
<td>Green Crab</td>
<td>Carcius maenas</td>
</tr>
<tr>
<td>Northern Shrimp</td>
<td>Pandulus borealis, P. montagui</td>
</tr>
<tr>
<td>Oysters</td>
<td>Crassostrea virginica</td>
</tr>
<tr>
<td>Soft shell clams</td>
<td>Mya arenaria</td>
</tr>
<tr>
<td>Bar clams</td>
<td>Spisula solidissima</td>
</tr>
<tr>
<td>Blue mussel</td>
<td>Mytilus edulis</td>
</tr>
<tr>
<td>Horse mussel</td>
<td>Modiolus modiolus</td>
</tr>
</tbody>
</table>

Source: Breeze et al. 2002.

4.4.4.1 Demersal and Benthic Fish

Abundant or commercially important demersal fish occurring in the study area include: Gadidae or Cod Family (Atlantic Cod; Tomcod, Haddock; Pollock; Red, White and Silver Hake and Cusk); Flounders (in particular American plaice, Yellowtail, Witch and Winter flounder, and Atlantic Halibut); Sand lance (*Ammodutes* spp); Redfish (*Sebastes* spp); and Skates (Little Skate; Winter Skate; Smooth Skate; Barndoor Skate; and Thorny Skate). Demersal species spend most of their time at or near the seabed, but can occur off the bottom. Important demersal species are identified in Table 4-21.

4.4.4.2 Pelagic Fish

Pelagic fish are those that live primarily in the water column; these make up a large proportion of the species occurring in Nova Scotia coastal waters. Of the many species in these waters, some occur commonly in the area, while others, comprising a long list of species, can be found occasionally. Among the most common fish are herring and mackerel, cunner, and silversides, which occur regularly in the Strait of Canso and Chedabucto Bay. Atlantic Salmon, American eel and trout are found in
both coastal and freshwater environments. Other species, such as bluefin tuna, swordfish and several species of sharks, which are typically seen offshore, occur occasionally in the study area. Pelagic fish are typically carnivorous, feeding on zooplankton and other fish, fish eggs and larvae, and invertebrate larvae. Pelagic species in turn are food for higher levels of the food chain.

Atlantic herring are an important pelagic species, occurring as adults seasonally in the study area, but with different life stages present year-round. Herring spawn on the seabed either in spring or fall; populations in different areas show different preferences. No spawning beds are found in the study area (Stewart and Arnold 1994a). Atlantic Mackerel are migratory and seasonal visitors to the Scotian Shelf and Slope as well as to coastal areas, en route to the Gulf of St. Lawrence. Schools of mackerel are commonly found in the Strait of Canso and Chedabucto Bay (Breeze et al. 2002). Common coastal species found in seaweed beds and shallow subtidal environments in both the Strait of Canso and Chedabucto Bay include sticklebacks (Three-spine, Gasterosteus aculeatus; and Four-spine, Apeltes quadracus) and cunner (Tautogolabrus adspersus).

4.4.4.3 Invertebrates

Several important mollusc and crustacean species are common to the study area and inhabit coastal areas throughout much of their life cycles (Breeze et al. 2002). American lobster (Homarus americanus) is a major fishery species for which good habitat occurs around the coast of the study area. Several species of crab occur in nearshore areas, in particular rock crab (Cancer irroratus) and the invasive Green Crab (Carcinus maenas), both of which are abundant in the study area. The larval stages of these species, as well as those of the Sea scallop (Placopecten magellanicus) spend periods of time in the plankton and are distributed throughout the area by water movements (Stewart and Arnold, 1994b). Blue mussel (Mytilus edulis) and horse mussel (Modiolus modiolus) commonly form dense beds on suitable rocky bottoms in the shallow waters around the coast.

4.4.5 Coastal and Water Associated Birds

4.4.5.1 Seabirds

Seabirds found in the study area include both coastal (neritic) species that spend most of their lives in coastal areas and occasionally forage in inland areas; and pelagic species that frequent the open ocean and only return to coastal waters and land to breed. Common coastal species include cormorants, gulls, terns, and guillemots. Pelagic seabirds include storm petrels, alcids such as dovekies, puffins and murres, shearwaters and kitiwakes. Most seabird species breed in colonies, usually on islands or cliffs, and are at their most vulnerable at these sites.

The Bear Head LNG facility is located in nearshore waters and most of the seabirds likely to be present are neritic seabirds. Pelagic seabirds generally occur near the mouth of Chedabucto Bay with some
brought further inland by storms.

Common Tern and Double-crested Cormorant are neritic seabirds which have been recorded as nesting in the general vicinity of the site (JWEL, 2004a). Only marginal common tern breeding habitat occurs at the site, and no tern nesting was observed; only occasional sightings were made during the summer breeding season at the site (JWEL, 2004a). Two tern nesting colonies are known in the general area: Scanlan’s Island in Inhabitants Bay and Long Pond in the Strait of Canso area; these are located 10 km and 15 km respectively from the Project site. Three colonies of Double-crested Cormorant are located on islands off Janvirn Island and Isle Madame in Chedabucto Bay east, and colonies of both Double-crested and Great Cormorant occur in coastal areas in the approaches to Chedabucto Bay (Figure 4-19). Herring Gull and Great Black-backed Gull nest throughout the study area, particularly along the south shore of Chedabucto Bay (Erskine, 1992). A colony of Leach’s Storm Petrel, a pelagic species, is known near Canso (Erskine, 1992).

Common Loons are found in the Strait of Canso in most seasons, but particularly during spring and fall migrations when they are often in large groups. Loons, however, were only occasionally seen during the surveys conducted at the Bear Head facility site (JWEL, 2004a). Various tern species, including Common terns, are also found along the coast in the Strait of Canso and Chedabucto Bay areas. Common Terns do not use the coastal waters adjacent to the Bear Head LNG site extensively based on earlier surveys (JWEL, 2004a).

Several common pelagic seabirds migrate through the area during summer and fall migrations; they are found near the mouth of, and often in, Chedabucto Bay. Greater Shearwaters and Sooty Shearwaters arrive in Nova Scotian waters in late May and remain through the summer, leaving in September (Sooty Shearwater) and November (Greater Shearwater). Wilson’s Storm-petrels are present from April to October with peak numbers occurring between June and August. Northern Gannets migrate along the Atlantic coast during the spring and fall, to and from breeding colonies in the Gulf of St. Lawrence, and non-breeding juveniles can be present in Chedabucto Bay in summer. Gannets typically arrive in March, and peak movements occur from mid-April to mid-May. Fall migration begins in early September and peaks between mid-October and early November. Alcids which include Common Murre, Thick-billed Murre, Razorbill, Atlantic Puffin and Dovekie, are northern-breeding species that move south to overwinter on the continental shelf off Newfoundland and Nova Scotia; they can be seen in Chedabucto Bay from November-December to April. Murres are present in local shelf waters from early December to April; Dovekies from November to April; Razorbills from mid-October to mid-May; and Atlantic Puffins during the fall between October and December.
Figure 4-19
Seabirds Colonies

Map Parameters
Projection: Universal Transverse Mercator (UTM)
Datum: NAD83
Zone: 20
Scale: 1:250,000
Project Number: 622560
Date: April 1, 2015

Data Source:
- Canvec (2013) Digital National Topographic System (NTS) topographic dataset
- ANEI Bear Head LNG Terminal Environmental Assessment 2004 (Jacques Whitford)
4.4.5.2 Coastal Waterfowl and Divers

Various sea duck, loon and grebe species are regularly seen in the study area. Most of these species breed in freshwater habitats and spend the fall, winter and early spring in coastal waters. They occur most frequently in Nova Scotia during the spring and fall migration. The species most frequently encountered include Common Eider, Black Scoter, White-winged Scoter, Surf Scoter, Red-breasted Merganser, Long-tailed Duck, Common Goldeneye, Common Loon, Horned Grebe, and Red-necked Grebe. Dabbling ducks such as American Black Duck are also present in relatively large numbers, but are largely restricted to shallow sheltered waters such as salt marshes, barachois ponds and sheltered coves. The number of coastal waterfowl present in the study area varies seasonally with the largest number of waterfowl present during the spring migration and the lowest numbers present during the summer months (Figure 4-20; Lock et al., 1994).

4.4.6 Marine Mammals

Coastal and offshore regions of Nova Scotia attract a wide variety of marine mammal species throughout the year. Twenty-one (21) species of cetaceans (dolphins, porpoises and whales) and six (6) species of pinnipeds (seals) have been recorded; however, many of these species are only occasional visitors to the area (Breeze et al 2002). SARA-listed fin whales were once known to aggregate in Chedabucto Bay in winter, but it is uncertain if this continues (Doherty and Horsman (2007) in Gromack et al (2010)). Aggregations of Harbour porpoise, White-sided Dolphin, Atlantic Pilot Whale and Minke Whale have been found in the Canso Ledges area (on the southeast side of Chedabucto Bay) (Gromack et al (2010)).

Marine mammals are important components of North Atlantic coastal and pelagic ecosystems. They are intelligent, warm-blooded species of particular interest to the general public; they also have an important role near the top of the marine food chain. Due to past whaling activities and low reproductive rates, many of the larger cetaceans are considered globally endangered or vulnerable. Although commercial whaling has largely ceased, cetaceans are still threatened by habitat destruction, accidental vessel strikes, entanglement in fishing gear, mortality from humans, and impacts of chemical and noise pollution in their marine habitats.

Nova Scotian seal populations are healthy and not considered threatened or vulnerable.

Interest in marine mammals extends beyond their ecological and economic importance. They have become a symbol for ocean conservation and their protection is of concern to both the scientific community and the general public. A map of generalized whale and dolphin concentrations and migration patterns is presented in Figure 4-21.
Figure 4-20
Coastal Waterfowl

Spring (Waterfowl/km)
- 12.00 to 51.06
- 2.50 to 11.99
- 0.50 to 2.49
- 0.03 to 0.49
- unsurveyed

Summer (Waterfowl/km)
- 1.00 to 17.23
- 0.50 to 0.99
- 0.05 to 0.49
- 0.025 to 0.04
- unsurveyed

Fall (Waterfowl/km)
- 4.00 to 133.7
- 2.00 to 3.99
- 1.00 to 1.99
- 0.03 to 0.99
- unsurveyed

Winter (Waterfowl/km)
- 7.50 to 66.06
- 5.00 to 7.49
- 2.00 to 4.99
- 0.06 to 1.99
- unsurveyed

Map Parameters
- Projection: Universal Transverse Mercator (UTM)
- Datum: NAD83
- Zone: 20
- Scale: 1:500,000
- Project Number: 622560
- Date: April 1, 2015

Data Source:
- Canvec (2013) Digital National Topographic System (NTS) topographic dataset
- ANEI Bear Head LNG Terminal Environmental Assessment 2004 (Jacques Whitford)
4.4.6.1 Cetaceans

The order Cetacea is composed of dolphins, porpoises, and whales. Within this order there are two subgroups, the mysticeti whales, known as “baleen whales”, and the odontoceti, known as “toothed whales”. Baleen whales, e.g., humpback whale and northern right whale, use specialized keratin plates to sieve prey items from the water column and bottom sediments, whereas toothed whales, e.g., Orca have teeth for actively hunting and grasping individual prey items. Many of the species recorded in Nova Scotian waters are offshore species which are unlikely to be found within the coastal study area. Characteristics of cetaceans found in Nova Scotia waters are presented in Table 4-23.

4.4.6.2 Pinnipeds

Seals are common to coastal and offshore waters in Atlantic Canada. They are important as top predators in the ecosystem and have been commercially harvested. The main species in Nova Scotian waters are the Grey Seal (Halichoerus grypus), a large seal commonly seen in coastal areas and the smaller Harbour Seal (Phoca vitulina) (Table 4-23). Both are common in the study area. The Harp seal (Pagophilus groenlandicus) is also found in most areas, but is associated with the seal harvest which takes place on ice floes in the Gulf of St. Lawrence and in Newfoundland waters. The Hooded seal and the more northerly Ringed Seal (Pusa hispida) may occasionally be found along the coast; the Bearded Seal (Erignathus barbatus) may sometimes stray from Newfoundland waters. The Canso Ledges are an important area for harbour and grey seal feeding (Gromack et al 2010). Breeding is not known to occur in the study area.

4.4.6.3 Sea Turtles

Four (4) sea turtle species, the Leatherback, Atlantic Ridley, Loggerhead and Green Sea Turtle, occur offshore in the western north Atlantic and might be seen in the study area. The most common is the Leatherback, which is found in offshore areas off the continental shelf in the summer and has been documented in and around the Chedabucto Bay. Further information on sea turtles is provided in Table 4-24 Though Green turtles typically occur in tropical or subtropical waters, a juvenile turtle was observed in Chedabucto Bay in August of 1999 (James et al 2004).

5 James et al 2005 reported results of 38 satellite tagged leatherback turtles utilizing the area of Chedabucto Bay and areas around Cape Breton Island.
Figure 4-21
Generalized Whale & Dolphin Concentrations & Migration Patterns

Highest Concentration of Species Distribution

Tooth Whales
- Northern Bottlenose Whale
- Pilot Whale
- Minke
- Fin
- Blue
- Humpback
- Right (Rare Occurrence)
- Sei

Baleen Whales

Data Source:
- Canvec (2013) Digital National Topographic System (NTS) topographic dataset
- ANEI Bear Head LNG Terminal Environmental Assessment 2004 (Jacques Whitford)

Map Parameters
- Projection: Universal Transverse Mercator (UTM)
- Datum: NAD83
- Zone: 20
- Scale: 1:1,200,000
- Project Number: 622560
- Date: April 1, 2015

Kilometres
Table 4-23: Characteristics of Cetacean (dolphins, whales and porpoises) and Seal Species occurring in Eastern Canadian Waters
(Shading indicates species at risk)

<table>
<thead>
<tr>
<th>Species</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CETACEANS</td>
<td></td>
</tr>
<tr>
<td>Harbour Porpoise (Phocoena phocoena)</td>
<td>The Harbour Porpoise (Phocoena phocoena) is a small distinctive porpoise found in coastal areas from summer to fall. It commonly breeds in July - August and found alone or in small groups of 2 - 20. It moves to offshore waters in the winter. It is designated as a species of special concern under COSEWIC (2006), federally listed as a Threatened species (SARA-schedule 2 species) and is listed on the IUCN Red list of Threatened species. Species abundance is largely impacted by fishing activities (caught as bycatch).</td>
</tr>
<tr>
<td>Long-finned pilot whale (Globicephala melaina)</td>
<td>Long finned Pilot Whale (Globicephala melaina) occur off coastal Nova Scotia and the Scotian Shelf from mid-March to late November and are often observed in groups of 10 - 50 and up to 500 individuals.</td>
</tr>
<tr>
<td>Fin whale (Balaenoptera physalus)</td>
<td>The Finback Whale (Balaenoptera physalus) is found in all oceans and throughout the area year-round. Several stocks are known to occur in the Maritimes; one stock winters off the Atlantic coastline, while another stock can be seen in the summer along the Scotian Shelf, both feeding on capelin and krill. The species were known to congregate in the Chedabucto Bay area in winter but it is not clear if this still occurs (Doherty and Horsman (2007) in Gromack et al (2010)). They can be found alone, in pairs, 3 - 7 and up to 100 or more on feeding grounds and are listed by COSEWIC and federally listed by SARA as species’ of special concern. Species abundance is impacted by entanglement in fishing gear and collisions with vessels.</td>
</tr>
<tr>
<td>Minke whale (Balaenoptera acutrostrata)</td>
<td>The Minke Whale (Balaenoptera acutrostrata) is one of the most commonly seen whales on the east coast and is the smallest of the baleens whales. It is observed in groups of 1 - 3 and in large groups when feeding as well as noted with the bay from May until late fall and generally in east coast waters year-round.</td>
</tr>
<tr>
<td>Atlantic white-sided dolphin (Lagenorhynchus acutus)</td>
<td>White-sided dolphins (Lagenorhynchus acutus) are common during the summer (June-September) in areas with high seabed relief and along the edge of the continental shelf. They are often seen traveling in groups of 5 - 50 or larger group sized offshore as well as with other dolphins and whales. They are known as fast swimmers and for their aerobatics and calving occurs during June and July.</td>
</tr>
<tr>
<td>Occasionally occurring and/or transient species in the area</td>
<td></td>
</tr>
<tr>
<td>White-beaked dolphin (Lagenorhynchus albirostris)</td>
<td>White-beaked Dolphin (Lagenorhynchus albirostris) is a common dolphin in the North Atlantic found widely in cooler continental shelf waters, especially along the shelf edge year round. It can be noted in groups of 2 - 30, up to 150 and can reach 1,500 in numbers.</td>
</tr>
<tr>
<td>Striped Dolphin (Stenella caeruleoalba)</td>
<td>Striped Dolphin (Stenella caeruleoalba) is a common dolphin in the northwest Atlantic, reported typically in deep water along and seaward of the continental shelf edge often in groups of 10 - 500 (1 - 3,000).</td>
</tr>
<tr>
<td>Risso’s Dolphin (Grampus griseus)</td>
<td>Risso’s Dolphin (Grampus griseus) occurs worldwide in tropical and warm temperate waters, principally deep offshore waters. They are found in groups of 3 - 50 (less common 1 - 150 or even several thousand).</td>
</tr>
<tr>
<td>Short-beaked Common Dolphin (Delphinus delphis)</td>
<td>Common Dolphin (Delphinus delphis) is seasonally present (summer-fall) throughout and common on Scotian Shelf and along shelf edge in groups of 10 - 500.</td>
</tr>
<tr>
<td>Bottlenose Dolphin (Tursiops truncatus)</td>
<td>Bottlenose Dolphin (Tursiops truncatus) is observed occasionally in east coast waters in summer but a more or less regular occupant (year round) of the shelf edge south of Cape Sable. They are found in groups of 1 - 10 inshore and 1 - 25 or up to 500 offshore.</td>
</tr>
<tr>
<td>Blue Whale (Balaenoptera musculus)</td>
<td>Blue Whale (Balaenoptera musculus) is a large whale, which migrates throughout the Maritime waters from mid-spring to winter and found in groups of 1 - 2 and up to 60. It is associated with coastal, shelf and oceanic waters. It is listed by COSEWIC and SARA as an endangered species.</td>
</tr>
<tr>
<td>Blainville’s Beaked Whale (Mesoplodon densirostris)</td>
<td>Blainville’s Beaked Whale (Mesoplodon densirostris) is a warm water species likely linked to warm current systems such as the North Atlantic Gulf Stream as well as deep slope waters (1600 - 3300 feet) (Folkens et al. 2002). They may stray into study area in the summer, are often observed in groups of 1 - 6 and up to 12 and are distributed in offshore waters in the winter.</td>
</tr>
<tr>
<td>Cuvier’s Beaked Whale (Ziphius cavirostris)</td>
<td>Cuvier’s Beaked Whale (Ziphius cavirostris) occurs worldwide except polar waters and is regularly seen in deep Atlantic waters including the edge of the Scotian Shelf and the Grand Bank. It is usually alone or in small groups (up to 7).</td>
</tr>
<tr>
<td>Species</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Humpback Whale (Megaptera novaeangliae)</td>
<td>Humpback Whale is a whale found over most east coast waters most of the year (May-Dec). They would be most commonly found in Nova Scotia waters while they are feeding during the summer and often observed in groups of 1 - 3 to numerous on breeding or feeding grounds. The species is listed as an endangered species in Canada.</td>
</tr>
<tr>
<td>North Atlantic Right Whale (Eubalaena glacialis)</td>
<td>The North Atlantic Right Whale is a large whale occasionally seen off southern Nova Scotia and in the Bay of Fundy and US east coast waters from June to November. It can be found alone or in small groups with occasional high concentrations (5 - 30) and typically feeds in the Bay of Fundy (NB and NS sides), along the Scotian Shelf, and in the Gulf of St. Lawrence from summer to fall. They are federally listed as an endangered species.</td>
</tr>
<tr>
<td>Sei Whale (Balaenoptera borealis)</td>
<td>The Sei Whale can be found year-round in shelf and oceanic waters of the east coast. They are observed in groups of 2 - 5 or occasionally in larger large groups.</td>
</tr>
<tr>
<td>Sperm whale (Physeter macrocephalus)</td>
<td>The Sperm whale occurs worldwide and is regularly sighted in deepwater off the continental shelf of Nova Scotia and New England year round. It can be found in groups of 1 - 50.</td>
</tr>
<tr>
<td>Northern Bottlenose Whale (Hyperoodon ampullatus)</td>
<td>Northern Bottlenose Whale is found in localized populations associated with the continental shelf edge from Labrador throughout Maritime waters (i.e., Gully Marine Protected Area and Whale Sanctuary) year round and in groups of 4 - 10 individuals. It is not abundant and is listed by COSEWIC as endangered.</td>
</tr>
<tr>
<td>Orca Whale (Orcinus Orca)</td>
<td>Orca Whale is a broadly distributed species; occasionally sighted in Maritime waters year round and often observed in groups of 3 - 25. They are abundant globally but would be unlikely to occur in the study area. It is listed under COSEWIC as a species of special concern.</td>
</tr>
<tr>
<td>Pygmy Sperm Whale (Kogia breviceps)</td>
<td>Pygmy Sperm Whale is a widely-distributed species with occurrences most likely in warm water and deep water at the shelf edge. They are often seen in groups of 3 - 6 (less commonly 1 - 10).</td>
</tr>
<tr>
<td>True's Beaked Whale (Mesoplodon mirus)</td>
<td>True's Beaked Whale is a rarely seen whale of deep waters occurring in the North Atlantic and several other areas often found in groups of 1 - 3.</td>
</tr>
</tbody>
</table>

SEALS

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey Seal (Halichoerus Grypus)</td>
<td>The Grey Seal is a large seal with concentrations in Gulf of St. Lawrence, coastal Nova Scotia and Sable Island. It can be seen alone, in small groups at sea or up to hundreds on land and ice floes.</td>
</tr>
<tr>
<td>Harbour Seal (Phoca Vitulina)</td>
<td>The Harbour seal is a small coastal seal occurring throughout the Nova Scotia coastline including shelf. It can be found alone, or in small groups breeding groups (May - June) and larger groups on shore and is present in the Bay year round.</td>
</tr>
<tr>
<td>Harp Seal (Phoca Groenlandicus)</td>
<td>Harp Seal is a common seal of northern parts of the Canadian east coast, at sea, around ice edges and on ice from winter to spring. It can be found in groups of 2 - 5, occasionally 1 - 12 and in large groups on ice when pupping or moultng and when feeding in water.</td>
</tr>
<tr>
<td>Hooded Seal (Cystophora Cristata)</td>
<td>Hooded Seal is a northern species which ranges south along pack ice to Gulf of St. Lawrence and off Newfoundland. It is solitary except during breeding and moultng season and unlikely to occur within the study area.</td>
</tr>
</tbody>
</table>

Table 4-24: Characteristics of sea turtles occurring in Eastern Canadian Waters occurring in Eastern Canadian Waters

(Shading indicates species at risk)

<table>
<thead>
<tr>
<th>Species</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leatherback Sea Turtle (Dermochelys coriacea)</td>
<td>Leatherback Sea Turtle (Dermochelys coriacea) is a large sea turtle listed as endangered under the Species at Risk Act & COSEWIC and is listed under the IUCN as critically endangered (COSEWIC 2012). The species is occasionally sighted on the east coast between June and October, typically from the Bay of Fundy to Sydney Bight, feeding on jellyfish, during a summer migration into northern waters. It is threatened by fisheries activities (bycatch), entanglement in fishing gear, habitat degradation, vessel strikes as well as climate change and other variables.</td>
</tr>
<tr>
<td>Loggerhead Turtle (Caretta caretta)</td>
<td>This migratory turtle species is widely distributed in the Atlantic, Pacific and Indian Oceans. Juveniles have been documented in Atlantic Canadian waters often associated with warmer offshore waters of the Gulf Stream and on the Scotian Shelf, Scotian Slope, Georges Bank and Grand Banks. Species abundance is threatened by fisheries activities (bycatch), habitat degradation, vessel strikes as well as climate change and other variables. It is listed by COSEWIC (2010) as endangered.</td>
</tr>
<tr>
<td>Green Turtle (Chelonia mydas)</td>
<td>This species typically occurs in tropical and subtropical waters, however juveniles have been documented in temperate coastal waters as well. It is listed on the IUCN Red List as endangered.</td>
</tr>
<tr>
<td>Atlantic Ridley (Lepidochelys kempii)</td>
<td>Atlantic Ridley turtle occurs from Nova Scotia to Newfoundland to Bermuda. It frequents shallow coastal waters with muddy or sandy bottom substrates and occurs in the open sea.</td>
</tr>
</tbody>
</table>

4.5 Socio-Economic Environment

4.5.1 Key Settlements, Land Use, Community Services and Infrastructure

The project site is located in the Point Tupper Industrial Park in the Municipality of the County of Richmond to the south of Port Hawkesbury; the industrial area is located on the Strait of Canso. The settlements in the area are Point Tupper and Port Hawkesbury (population approximately 3,350). Guysborough County and the Town of Mulgrave (population 900) are situated across the Strait of Canso. Point Tupper is a very small residential community, but has a large industrial presence. Port Hawkesbury is the nearest urban service center.

Historically, Point Tupper was an important coastal village with homes, a hotel, two churches, a railroad station and a few stores. In the late seventies, much of the private land was purchased to make way for new industries wishing to locate in the area due to the deep ice free water afforded by the Strait of Canso. Today there are fewer than 10 homes. One of the churches is used by the Point Tupper Heritage Association as a museum. The emergence of Port Hawkesbury as the principal urban center coupled with the area’s potential for industry and shipping has led to a decline in the Point Tupper population.

Port Hawkesbury is the largest urban centre in the area. The town experienced its most significant population growth following the opening of the Canso Causeway in 1955 and the development of the Point Tupper Industrial Park in 1959. Between 1956 and 1976, the population nearly quadrupled from a little over a 1,000 to 4,000. Subsequent economic volatilities have had a negative impact on growth. Port Hawkesbury covers a land area of 8.11 km² with a population density of 414.8 per km². In 2011, the population was 3,366. Eighty-three percent (83%) is over the age of 15, with 23% of the...