Table of Contents

SUMMARY AND CONCLUSIONS

Chapter 1. INTRODUCTION

Project Descriptions

Environmental Review Process

Chapter 2. THE SABLE OFFSHORE ENERGY PROJECT

Description

Purpose and Need
 Supply Availability
 Markets

Design of the Proposed Facilities
 Offshore Platforms
 Offshore Pipeline
 Slugcatcher
 Goldboro Gas Plant
 Natural Gas Liquids Pipeline and Treatment Plant

Method of Regulation

Environmental Setting
 Physical Environment
 Marine Biological Environment
 Terrestrial Biological Environment
 Public Consultation

Offshore Environmental Issues
 Framework for Analysis
Project Interaction with the Environment
- Drilling and Production Wastes
- Resuspension of Seafloor Sediments
- Underwater Noise
- Animal Disturbance
- Fabrication, Supply and Service Bases
- Accidents and Malfunctions

Effects on Valued Environmental Components
- Fish Habitat
- Fish, Fisheries, and Aquaculture
- Marine Mammals
- Marine Birds
- The Gully
- Sable Island

Environmental Effects on the Project
- Sea Ice and Icebergs
- Extreme Conditions
- Navigable Waters

Monitoring

Onshore Environmental Issues
- Framework for Analysis

Project Interaction with the Environment
- Watercourse Sedimentation
- Strat of Canso
- Acid Drainage
- Habitat
- Accidental Events

Effects on Valued Ecosystem Components
- Watercourse Crossings
- Strait of Canso Crossing
- Acid Drainage
- Habitat
- Accidental Events

** Decommissioning and Abandonment of Facilities**

Cumulative Effects
Chapter 3. THE MARITIMES AND NORTHEAST PIPELINE PROJECT

Description

Purpose and Need
Gas Supply
Security of Supply
Markets

Design of the Proposed Facilities

Financial Regulation
Method of Regulation
Cost of Service Methodology
Income Tax Issue
Cost of Equity Capital
Tolls and Tariffs
Toll Design and Market Development

Environmental Setting
Physical Environment
Terrestrial Biological Environment
Aquatic Biological Environment
Public Consultation

Environmental Issues
Framework for Analysis
Project Interaction with the Environment
 Watercourse Sedimentation 70
 Acid Drainage 72
 Accidents and Malfunctions 72

Effects on Valued Environmental Components
 Watercourse Crossings and Fish 72
 Water Quality 74
 Old Growth Forest 74
 Habitat 75

Inspection and Monitoring 76

Decommissioning and Abandonment of Facilities
 Cumulative Effects 78

Land Matters
 Land Acquisition 80
 Pipeline Route Selection 80
 Land Use Conflicts 81
 Special Environmental Areas 81
 Access 82
 Forests and Forestry 82

M&NPP Socio-Economic Issues
 Methodology 83
 Economic Benefits 83
 Training 84
 Monitoring and Enforcement 84
 Services and Infrastructure 84
 Archeological and Heritage Resources 85

Chapter 4. MATTERS COMMON TO BOTH SOEP AND M&NPP

Alternatives to the Project 86

Price Transparency 87

Health Effects 88

Aboriginal Issues 89

Rural Quality of Life 90

Conclusion 91
RECOMMENDATIONS

ACKNOWLEDGEMENTS

APPENDICES

Appendix I Agreement for a Joint Public Review of the Proposed Sable Gas Projects
Appendix II Biographies of the Panel Members
Appendix III Project Descriptions Provided by the Ministers of Environment for Canada and the Province of Nova Scotia
Appendix IV Revised List of Issues
Appendix V Joint Position on Tolling and Laterals
Appendix VI National Energy Board Panel Decision on TQM Motion for Delay

LIST OF TABLES

TABLE 1. Nature and Extent of SOEP Consultation as of May 1996
TABLE 2. Estimate SOEP Materials and Labour Expenditures By Location and Project Phase
TABLE 3. Estimated SOEP Direct Person-Years of Employment By Location and Project Phase

LIST OF FIGURES

Figure 1. The Sable Gas Projects
Figure 2. SOEP Project Schematic
Figure 3. Design Rates for SOEP Facilities
Figure 4. Photograph of the Pipe-Lay Barge
Figure 5. Photograph of a Typical Gas Plant
Figure 6. Offshore Fishery
Figure 7. Overview of the proposed sites for SOEP’s Gas Plant, Liquids Line and Handling Facilities
Figure 8. Map of Scotian Shelf and Gully
Figure 9. A Wet Crossing
Figure 10. A Directional Drilled Crossing
Figure 11. A Dry Crossing
Figure 12. M&NPP Pipeline Route Map
Figure 13. Photograph of a Typical Mainline Valve Station
Figure 14. Photograph of Pipeline Construction Activity
Figure 15. no caption
LIST OF TEXT BOXES

The Role of the Certifying Authority
Drilling Muds and Cuttings
Precautionary Principle
ISO 14000 Environmental Management Program
Acid Generating Rock
Market Based Procedure
Market Terms

ABBREVIATIONS 135

GLOSSARY 137
tions, and showed that the likelihood of drill cuttings and associated mud reaching the Gully would be very small (0.27 percent of the time). Additionally, the probability of their reaching the Gully at concentrations capable of adversely impacting the Gully’s marine life is even smaller.

In response to DFO, the Proponents have proposed the following measures to mitigate any adverse environmental effects: adoption of specialized mud handling equipment; acceptance of a compliance and effects monitoring program, as outlined to the Panel; and adherence to sound and responsible environmental management.

The Proponents have also stated that the fate and effects of drill cutting discharges will be investigated as part of the five year Environmental Effects Monitoring (EEM) programs, and will involve benthic sediment chemistry, benthic community analysis, in-situ monitoring and organoleptic testing of sea scallops. If for example, the EEM program showed greater than anticipated impact to the environment, the use of SBMs would be investigated to determine whether they could mitigate those effects. The Environmental Effects Monitoring (EEM) program would continue should other fluids be utilized. In addition, regular compliance monitoring will be conducted on the drilling units to measure discharge volumes, rates and percentages of retained oil. The Proponents also stated that whole oil-base or synthetic drilling mud will not be disposed into the ocean. Water base fluids which will be used in the upper sections of the hole will be disposed overboard along with the associated cuttings. SOEP stated that they will work to develop agreed upon criteria for the possible use of alternative methods for the disposal of drilling cuttings and mud. Furthermore, waste discharges will not be combined into common outflows with the objective of diluting a waste stream to meet specified discharge concentrations.

Some intervenors argued for a zero-discharge policy in accordance with their interpretation of the precautionary principle. Based on the confidence expressed by DFO in the modelling scenarios and the proposed use of low toxicity mineral oils

Precautionary Principle

Recognition of the gap in scientific information and data has led to the development and increased acceptance of the “precautionary approach” as a decision-making principle in situations involving environmental effects. This principle states that where there are threats of serious or irreversible damage to the environment, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation.

The first significant application of the precautionary principle in international environmental law took place in 1987 at the signing of the Montreal Protocol on Substances That Deplete the Ozone Layer, Other global conventions which Canada has signed incorporating this principle include the 1992 Rio Declaration on environment and development and the 1996 United Nations Convention on Straddling Fish Stocks and Highly Migratory Fish Stocks.

The precautionary principle is referred to in the Nova Scotia Environment Act, and in the Oceans Act. This principle is also one of the guiding principles in the federal Department of Fisheries and Oceans revised policy on Underutilized Species (or Emerging Fisheries).

The precautionary approach has also been recommended for inclusion into the revision of the Canadian Environmental Protection Act by the House of Commons Standing Committee on Environment and Sustainable Development.