LOWER CHURCHILL HYDROELECTRIC GENERATION PROJECT

JOINT REVIEW PANEL

PROJET DE CENTRALE DE PRODUCTION D'ÉNERGIE HYDROÉLECTRIQUE DANS LA PARTIE INFÉRIEURE DU FLEUVE CHURCHILL

COMMISSION D'EXAMEN CONJOINT

CANADIAN ENVIRONMENTAL ASSESSMENT REGISTRY 07-05-26178 REGISTRE CANADIEN D'ÉVALUATION ENVIRONNEMENTALE 07-05-26178

HEARING HELD AT

Hotel North Two Conference Room 382 Hamilton River Rd Happy Valley-Goose Bay, NL

Thursday, March 17, 2011

Volume 13

JOINT REVIEW PANEL

Mr. Herbert Clarke
Ms. Lesley Griffiths
Ms. Catherine Jong
Dr. Meinhard Doelle
Mr. James Igloliorte

International Reporting Inc.
41-5450 Canotek Road
Ottawa, Ontario
K1J 9G2
www.irri.net
1-800-899-0006

1	DR. SCHMELZER: Six inches, is it?
2	CHAIRPERSON GRIFFITHS: Or
3	whatever you can do.
4	DR. SCHMELZER: Okay.
5	PRESENTATION BY THE GOVERNMENT OF NEWFOUNDLAND
6	AND LABRADOR, DEPARTMENT OF ENVIRONMENT AND
7	CONSERVATION, DR. ISABELLE SCHMELZER AND MR.
8	SHANNON CROWLEY:
9	DR. SCHMELZER: I am here today to
10	talk to you about our to give you an overview of
11	our review of the EIS pertaining to caribou and the
12	associated documents.
13	Just to give you a little bit of
14	background, I've had the great privilege over the
15	last 12 years to work alongside many other
16	biologists and conservation officers in the study
17	of primarily the sedentary, that is, the forest
18	dwelling populations of caribou here in Labrador,
19	and have no doubt bored to tears countless people
20	with my long-winded recollections of my latest
21	discovery.
22	However, I also hold a Doctorate
23	in Wildlife Ecology. In particular, I focused on
24	the relationship between changes in landscape and
25	environmental conditions and their expression in

1	1 7	7 1 1	7	_	' 1 11 ' C
1	the	population	ecology	ΟĪ	wildlife.

- 2 I'm the current Chair of the
- 3 Labrador Woodland Caribou Recovery Team, and I've
- 4 also participated on several national scientific
- 5 technical committees pertaining to caribou ecology
- 6 and identification of critical habitat.
- 7 CHAIRPERSON GRIFFITHS: Oh,
- 8 Dr. Schmelzer, I'm sorry. I think -- if you can
- 9 slow down just a fraction for the interpreters?
- 10 Sorry about that.
- 11 DR. SCHMELZER: There are several
- 12 pieces of legislation that govern wildlife
- 13 management in the province, and caribou in
- 14 particular.
- The Committee on the Status of
- 16 Endangered Wildlife in Canada, known as COSEWIC,
- 17 has twice assessed woodland caribou across Canada,
- 18 and each time the designation has been that of a
- 19 threatened population.
- 20 Correspondingly, caribou have been
- 21 listed as threatened species under the *Provincial*
- 22 Endangered Species Act, in 2002, and a year later
- 23 under the Federal Species At Risk Act.
- 24 A recovery team was established in
- 25 2001 and published a recovery plan which was -- in

- 1 July of 2004. That strategy is currently being
- 2 updated, and just for -- because this question has
- 3 come up over the intervening couple of hours, that
- 4 recovery strategy is available freely online and
- 5 can be downloaded and reviewed.
- 6 The recovery goal for all three
- 7 sedentary populations, not just the Red Wine
- 8 Mountain population, is that of self-sustaining
- 9 wild population distributed throughout their
- 10 natural ranges.
- 11 The Environmental Impact
- 12 Statement, which I will be referring to as the EIS
- 13 from here on in, has selected several key
- 14 indicators, including two woodland caribou
- 15 populations; the George River Herd and the Red Wine
- 16 Mountain Herd.
- I will be focusing my presentation
- 18 today primarily on the second of these, given its
- 19 year-round proximity to the project area, and its
- 20 threatened status.
- Just for -- I'm sure you're all
- 22 aware of this, but just so the audience is aware,
- 23 I'll be primarily referring to the documents,
- 24 Volume 2, Part A and B, which is the Biophysical
- 25 Assessment, and also Component -- or, sorry,

1	Report 4 of the Large Mammal Component Studies.
2	I felt that, in general, the EIS
3	does provide a good overview of caribou populations
4	in central Labrador, and discusses the potential
5	impacts of the Lower Churchill development, which
6	include the Muskrat Falls and the Gull Island dams,
7	but not the transmission quarters associated with
8	these developments.
9	However, I would like to bring to
10	the panel's attention some sources of uncertainty
11	in the analyses and the predictions.
12	In particular, I believe there is
13	still uncertainty with respect to habitat
14	preferences at the range level for Red Wine
15	Mountain caribou. There is an absence of a more
16	comprehensive view of the direct and indirect
17	impacts of the project on caribou that extend
18	beyond the physical footprint of the inundation per
19	se.
20	There may be a change in
21	ecological conditions that might lead to additional
22	wolf mortality, and the fact that wintering George
23	River caribou were not explicitly addressed in the
24	analyses.
25	Project effects or the footprint

1	were	described	in	relation	$t \circ$	their	occurrence	\circ n
1		acocranca		$\perp \cup \perp \cup \cup \perp \cup \sqcup$			OCCUL L CIICC	\circ

- 2 preferred caribou habitats, so the first step here
- 3 is to create a caribou habitat model, which the
- 4 Proponent did.
- 5 These, known as Resource Selection
- 6 Functions, are statistical models which relate
- 7 caribou location information often collected via
- 8 radio telemetry to underlying properties of the
- 9 landscape.
- There are two general conditions
- 11 that should be met in order for these predictions
- 12 from these models to be valid. The first is that
- 13 the landscape information used in the model should
- 14 be representative of what a caribou might actually
- 15 be exposed to throughout its range. The second
- 16 condition is that the radio telemetry data used
- 17 should be of as long a time series as possible and
- 18 cover all of the seasonal ranges of caribou.
- 19 If you turn your attention to the
- 20 graphic on the slide, you'll see that the
- 21 assessment area boundary was set as the outer range
- 22 of the Red Wine Mountain Herd, which is given in
- 23 orange.
- 24 However, the assessment area used
- 25 to determine habitat preferences is the area shaded

- 1 in black, which corresponds to the Forest Resource
- 2 District 19.
- 3 As a consequence, the habitat
- 4 information used occurs over only about a third of
- 5 the population's range. Now, this might not be a
- 6 problem if the ecological information is
- 7 representative of what a caribou might experience
- 8 throughout the rest of its range.
- 9 So let's address that assumption.
- 10 Lopoukhine, who wrote a very detailed overview of
- 11 the ecological communities available in Labrador,
- 12 indicated that there are seven ecological
- 13 communities that occur throughout the Red Wine
- 14 Mountain range. However, only two of these occur
- 15 within the forest inventory district used to define
- 16 habitat preferences.
- If you'll take a look at the two
- 18 series of photographs shown on the slide, the top
- 19 two photographs correspond to habitats that one
- 20 might frequently find within the forest inventory
- 21 extent.
- You'll note that they are
- 23 characterized by fairly dense number -- a high
- 24 number of trees, fairly closed canopies. Whereas
- 25 the bottom two pictures correspond to habitats that

1							
1	carıbou	irequently	experience	but	were	not	included

- 2 in the analysis, and they are much more open, like
- 3 in woodlands, eskers, et cetera. They are
- 4 generally not commercially productive areas.
- 5 Unfortunately, this means that
- 6 irrespective of how well the model might have
- 7 predicted preferences within the forest management
- 8 area, and it did predict them quite well within
- 9 that area, these results cannot be extrapolated
- 10 outside that region. In fact, the model results
- 11 might change significantly if the full suite of
- 12 available habitats had been considered.
- We can now have a look at the
- 14 caribou data. If you'll turn your attention to the
- 15 bottom graphic shown in this slide, you'll see a
- 16 mass of dots super-imposed by a pinkish-yellow
- 17 blob. That pinkish-yellow blob corresponds to the
- 18 extent of the forest inventory, which was used to
- 19 determine preferences. So all of the green dots
- 20 that occurred within that pink blob were
- 21 incorporated into the analyses. However, as you'll
- 22 see, unfortunately, this excludes a significant
- 23 portion of the data. Some consequences of that
- 24 decision are the fact that a lot of the winter
- 25 ranges used by caribou were excluded, including

1		C	D	
1	wintering	George	Kiver	caribou.

- 2 If you look at the graphic on the
- 3 top of this slide, you'll see that green blob.
- 4 You're going to think ecologists only deal with
- 5 blobs, but that green blob corresponds to areas
- 6 that Red Wine Mountain caribou have used
- 7 consistently between many years. So you will see
- 8 that many of them do occur outside the area used to
- 9 define preferences.
- 10 Unfortunately, this means that the
- 11 assertion by the Proponent, that the data used to
- 12 model habitat preferences is strongly
- 13 representative, cannot be upheld.
- 14 Let's put these reservations aside
- 15 for a moment and just have a look at what the model
- 16 presented does tell us, and it does tell us several
- 17 things.
- For your reference, all caribou
- 19 habitat preferences were grouped into three
- 20 categories; primary, secondary, and tertiary, where
- 21 primary habitats are the most attractive and
- 22 tertiary habitats the least attractive.
- Based on some of the outputs of
- 24 the model provided, we see that there is little to
- 25 no selection for secondary or tertiary habitats,

- 1 that is they are marginal at best. And, from a
- 2 reviewer's perspective, that means we should focus
- 3 on loss of primary habitats.
- 4 Secondly, we see that disturbance
- 5 was a significant -- and by that I mean a
- 6 statistically significant -- predictor of caribou
- 7 habitat preferences. That is, caribou chose to
- 8 avoid areas that were disturbed, and disturbance in
- 9 this case was defined as regions with roads,
- 10 transmission corridors, cutblocks, and cultural
- 11 areas which concentrate human activities.
- 12 Thirdly, we see from the output
- 13 that the footprint will double during the
- 14 construction phase of the proposed development and
- 15 that most of this doubling is due to a change on
- 16 the winter ranges, and that brings me to my final
- 17 point.
- 18 If you compare all of the primary
- 19 available -- yes, primary quality winter habitat to
- 20 the total available, you'll see that approximately
- 21 a third of the primary winter habitats within the
- 22 region assessed will be affected.
- 23 So why are winter ranges important
- 24 to caribou, you might ask. Well, anybody who's
- 25 spent some time here knows that winters here are

- 1 long, and caribou spend up to six months per year
- 2 on their winter ranges.
- 3 During this time, they have very
- 4 specific habitat requirements. They will select
- 5 areas that are very rich in terrestrial lichens, in
- 6 particular. They have evolved a unique ability
- 7 among all ungulates, through a symbiotic
- 8 relationship with a bacteria, to digest lichens.
- 9 While on their winter ranges
- 10 caribou greatly restrict their movements
- 11 conceivably to reduce their energetic expenditures.
- 12 They also dig craters right down through the snow,
- 13 and you'll see an example of that on the slide
- 14 there where a caribou has dug right down through
- 15 about a metre of snow to the ground to access the
- 16 lichens beneath. They are also sensitive to
- 17 disturbance during this time.
- The reason why we are concerned
- 19 about winter ranges is because they occur in close
- 20 proximity to the project area and to the Trans-
- 21 Labrador Highway which will be indirectly affected
- 22 by an increase in traffic associated with the
- 23 proposed development.
- 24 The majority of individual Red
- 25 Wine Mountain caribou ranges are bisected by the

1	Trans-Labrador	Highway	and	the	transmission
2	corridor.				

- 3 Other studies have indicated that
- 4 caribou avoid roads perhaps because wolves use them
- 5 as travel corridors, perhaps because they
- 6 concentrate human activity or perhaps because they
- 7 tend to be characterized by early successional
- 8 forests, which are not attractive to caribou.
- 9 The proposed development includes
- 10 construction of 316 kilometres of new road and an
- 11 additional 80-metre right-of-way to the existing
- 12 transmission corridor which often parallels the
- 13 road.
- 14 A prior study in Alberta has
- 15 indicated that even a gravel road with even
- 16 moderate traffic can result in a reluctance to
- 17 cross by caribou.
- 18 Given this information, it is
- 19 critical that we evaluate the extent to which
- 20 caribou perceive the road and, secondarily, the
- 21 transmission line and river as barriers in order to
- 22 avoid fragmentation of the range.
- In particular, I think also we
- 24 need to evaluate the Proponent's prediction that
- 25 regional movements are expected to be maintained

1	under these circumstances.
2	I wanted to comment briefly on
3	direct versus indirect effects. Direct effects are
4	those which result in immediate mortality or loss
5	of habitat. For example, the calculation of the
6	total inundated area might be an example of a
7	direct effect, and those are often the focus of
8	impact assessments.
9	Indirect effects are those that
10	don't immediately result in loss of habitat or
11	mortality, but they're much more insidious. They
12	tend to occur over longer timeframes and involve
13	changes in ecological conditions.
14	An example of an indirect effect
15	would be changes in the prevalence of disease or
16	parasites, changes in the ecology, abundance or
17	distribution of predators, or even in the types of
18	vegetative communities that follow removal of
19	different kinds of habitat.
20	Unfortunately, caribou have shown
21	themselves to be very susceptible to indirect
22	effects.
23	For example, a study in Alberta

INTERNATIONAL REPORTING INC.

indicated that caribou were much more likely to die

than chance alone by simply being near a road, much

24

25

1	less on the road.
2	Taken collectively, the
3	combination of direct and indirect impacts suggests
4	that the project effects can be expected to extend
5	beyond the footprint of the development per se.
6	There is often a very small margin
7	between growth and decline in caribou populations
8	and the same is true here. Caribou don't produce
9	young often until they are at least two years old,
10	and then only one young, and maybe not every year,
11	and those young often don't survive very well
12	either.
13	Survival of adult female animals
14	is critical to growth of woodland caribou
15	populations. The Wildlife Division has been
16	monitoring survival of radio-collared females for
17	close to 30 years and we have some good information
18	on causes of mortality.
19	If you turn your attention to the
20	table provided in the graph, you'll see causes of
21	known mortality; that is, where we have
22	investigated animals shortly after their death and
23	have been able to determine the cause of death.
24	In 18 confirmed cases over the
25	last 10 years, what you'll see is that predation by

1	wolves accounts for the majority of all deaths.
2	Note that the proportion of deaths
3	is quite similar to that that was observed during
4	the 1980s for this population and virtually
5	identical to that observed over the same time
6	period for an adjacent population within Labrador
7	or the Lac Joseph herd.
8	Bear predation is surprisingly
9	important also. It's known that bears take calves,
10	but to have documented deaths of adults is rather
11	unusual and has not been observed in the other
12	population studied.
13	Mortality is not distributed
14	equally throughout the year. Controlling for the
15	length of season, we see that caribou deaths are
16	more likely to occur when they travel, for example,
17	when they travel from their winter ranges to their
18	calving areas and vice versa and also during the
19	month of August.
20	During this time, wolves with pups
21	are often much more mobile and bears are trying to
22	put on as much weight as possible. So perhaps they
23	are experiencing higher predation during that time.
24	There have been five formal
25	surveys of the Red Wine Mountain population since

1	1983.	The	figure	shown	in	the	graph	here
1	T 2 0 2 •	T 11 C	TIGULE	SHOWH		CIIC	graph	11CT C

- 2 summarizes these. What you'll see is that there's
- 3 been a fairly catastrophic decline in this
- 4 population, a decline of close to 85 percent.
- 5 Numbers were seen to be relatively
- 6 stable in the area of about 700 individuals.
- 7 However, since 1989, the population has been --
- 8 well, actually, I should say since 1997, because
- 9 that's the last survey that we had -- the first
- 10 survey we had on that low number, the population
- 11 has been in the magnitude of approximately 100
- 12 individuals.
- 13 Because wintering George River
- 14 caribou also intermingle with wintering Red Wine
- 15 caribou, at least over the last several years, we
- 16 have not been able to conduct a survey that would
- 17 count only Red Wine Mountain caribou.
- 18 However, prior to winter
- 19 incursions of George River caribou, we have gone
- 20 out and counted the number of individuals
- 21 associated with all collared animals to get an idea
- 22 of the minimum population size that might be in
- 23 this population and those counts suggest that the
- 24 population is still within that range.
- We feel that the significance of

1	project	effects	should	be	considered	in	light	of

- 2 the small population size of this herd.
- 3 The EIS guidelines stipulated that
- 4 effects of the development on George River caribou
- 5 should also be discussed. Unfortunately, this herd
- 6 also has undergone a fairly significant decline
- 7 over the last 10 years.
- 8 In correspondence with this
- 9 decline has been a decrease in the body condition
- 10 of these animals. Several studies have suggested
- 11 that surprisingly, these caribou appear to be
- 12 gaining weight during the winter.
- Now, it doesn't make any sense for
- 14 a herbivore to be gaining weight during winter, but
- 15 nonetheless it has been documented, and one of the
- 16 explanations for this is the poor condition of the
- 17 summer range of this herd, potentially, and the
- 18 fact that caribou may actually use lichen-rich
- 19 winter ranges to compensate for the poor condition
- 20 of the summer range under some conditions.
- 21 Because George River caribou occur
- 22 in much greater numbers, they actually have quite
- 23 an impact on the winter ranges themselves. If you
- 24 look at the photograph shown on these slides, the
- 25 photograph on the left is one where a caribou range

1	has	been	recently	 and	vou'	11	see	that	the

- 2 effects of trampling and foraging have removed a
- 3 great deal of the surface vegetation, including the
- 4 lichens.
- 5 The photograph immediately
- 6 adjacent to it is actually not of snow. That is of
- 7 a very lichen-rich winter habitat. It's in a
- 8 climax, sort of old growth, open lichen woodland.
- 9 George River caribou are known to
- 10 have to switch their winter ranges from year to
- 11 year because of the impacts they actually have on
- 12 their winter ranges when they're on them.
- 13 And over the last 10 years or so,
- 14 they have been using the area within the Red Wine
- 15 Mountain Range increasingly frequently and we can't
- 16 rule out the possibility that they'll continue to
- 17 do so in the future, which would bring them into
- 18 contact with the project area.
- Just to pull some of that
- 20 information together for you a little bit, it is
- 21 vital that predictions of the impact and their
- 22 significance be evaluated if the project proceeds.
- There are several uncertainties
- 24 that remain. In particular, the direct and
- 25 indirect effects of habitat loss and alteration,

1	1 3	' C]	_	1		1	
1	the	influence	ΟĪ	roads,	traiilcs	and	increased

- 2 access and possible changes to the predator/prey
- 3 dynamics.
- 4 While the literature does provide
- 5 some guidance with respect to possible impacts, in
- 6 order to address these we need strong empirically-
- 7 based research and we need to move away from
- 8 assumptions based on expert opinion or
- 9 extrapolation from small study areas or other parts
- 10 of the country.
- 11 Currently, proposed mitigations
- 12 for caribou listed in Table 7-3 include
- 13 participation on the recovery team and a cessation
- 14 of blasting within three kilometres of a sighted
- 15 animal.
- We feel that additional monitoring
- 17 and research is required to implement effective
- 18 mitigation. In particular, we suggest it be
- 19 targeted to the following four areas: a reduction
- 20 of disturbance during construction and operation;
- 21 the identification of high value seasonal habitats
- 22 and their connectivity throughout the range; and an
- 23 evaluation of predator/prey interactions.
- 24 Results of these efforts can be
- 25 used to better mitigate for Phase 2; for example,

1 the Gull Island phase of this project, as well as

- 2 other types of developments and, in fact, data
- 3 collected under other environmental impact
- 4 assessment processes has been used to inform this
- 5 assessment to a large degree.
- 6 Monitoring should be structured in
- 7 a manner that will allow biologists to detect
- 8 changes in distribution, movement and demography
- 9 between baseline construction and post-construction
- 10 periods.
- In order to do so, there should be
- 12 a good representation of collared animals; that is
- 13 both males and females over different age classes.
- 14 The relocation interval should be
- 15 frequent enough -- that is the interval with which
- 16 the collar collects locations and transmits those
- 17 locations to biologists, should be frequent enough
- 18 to allow for mitigation based on presence.
- 19 The collar should include activity
- 20 sensors, which allow one to gain some insights into
- 21 decisions a caribou might be making regarding road
- 22 and river crossings.
- 23 And finally, additional measures
- 24 may be required, for example, inventories within
- 25 certain sensitive areas or other non-invasive

1	sampling methods near construction sites.
2	There are several actions that
3	could be taken to mitigate for disturbance and some
4	of these have already been covered.
5	Most obviously, the timing of
6	activities should be structured to minimize impact
7	during the most sensitive periods; for example,
8	perhaps during calving or during late winter.
9	With respect to roads, the
10	identification of areas where access can be
11	adjusted or minimized to reduce disturbance or
12	promote crossings, we should ensure that there
13	suitable areas for animals to continue to cross.
14	We need to gain more information
15	about preferences regarding crosses from caribou
16	and we can always do things like lower speed limits
17	and erect additional signage to prevent road-
18	related mortality.
19	Several references have been made
20	today regarding possible changes to predator-prey
21	interactions and in Labrador's case, these are
22	primarily the wolf, moose, caribou interaction.
23	These types of interactions are at
24	the heart of declines in other regions. However,
25	the cause is not as intuitive as it might initially

1	seem.					
2	For example, one might assume that					
3	a change in the available prey would result in an					
4	increase in this case a moose, would result in					
5	an increase in the wolf population, which would					
6	then result in an increase in incidental predation					
7	on caribou as they are more easy to catch than					
8	moose.					
9	However, there are two competing					
10	hypotheses that could explain the mechanism by					
11	which caribou are affected. The first is the one I					
12	just described and the second is simply that					
13	predators are more efficient when they hunt along					
14	linear features.					
15	Regardless, there has been a					
16	documented relationship between these types of					
17	interactions and the levels of anthropogenic					
18	disturbance within caribou ranges.					
19	To address some of these					
20	questions, the province has recently initiated a					
21	study which attempts to gain some insights into					
22	wolf kill rates and hunting patterns within ranges					
23	of sedentary caribou.					
24	Caribou operate at broad spatial					
25	scales. To give you an idea, the mean range size					

1	of	an	individual	Red	Wine	Mountain	Caribou	is	in
---	----	----	------------	-----	------	----------	---------	----	----

- 2 the magnitude of 6,000 to 8,000 sq km. Indeed,
- 3 space itself is deemed to be one of the primary
- 4 aspects of caribou habitat.
- 5 Scientists have recommended that
- 6 caribou habitat be managed at the range level and
- 7 not at the stand level, and this involves
- 8 identifying properties of high value seasonal
- 9 habitats across large spatial areas.
- 10 Unfortunately, detailed
- 11 information is not found universally available
- 12 across all ranges, and so what is available, for
- 13 example, the Forest Resource Inventory, while it
- 14 includes detailed information on things like forest
- 15 types, crown closure, stand density, it excludes
- 16 information that is quite relevant to wildlife.
- For example, it doesn't include
- 18 information on any ground cover, such as lichens,
- 19 which we know are preferred by caribou during
- 20 winter, or wetlands which we know are used by
- 21 caribou for calving as well as many other wildlife.
- 22 So there are some significant limitations.
- To address some of these
- 24 deficiencies, the province in conjunction with many
- 25 of its partners has been investing a significant

1	amount of effort into understanding caribou habitat
2	relationships.
3	We have been undertaking a series
4	of studies that attempt to integrate remotely
5	sensitive information with field data to create a
6	base map of ecological communities relevant to
7	caribou.
8	These efforts are very intensive
9	and they are cooperative ventures that the
10	Proponent could choose to collaborate with in order
11	to get a better idea of the range level habitat
12	preferences.
13	In summary, we concur with the
14	Proponent in acknowledging adverse effects of this
15	development on Red Wine Mountain Caribou, however
16	cannot agree that the level of certainty regarding
17	project effects as non-significant is high.
18	A monitoring program will be
19	required to verify impact predictions and to ensure

- minimal impacts to Red Wine Mountain and wintering 20
- George River caribou during construction and 21
- operation of the proposed development. 22
- Generally, mitigations are 23
- 24 addressed following the impact assessment through
- 25 these EMM and EPP -- which Shelley defined

- 1 previously, and I'm not going to bungle here --
- 2 programs. These are plans -- there are other
- 3 industrial developments of similar magnitude that
- 4 could be used as a model for the development of
- 5 sufficient monitoring plans.
- In closing, I would like to thank
- 7 the panel for the opportunity to speak here today,
- 8 my colleagues for their assistance in the
- 9 development of my presentation, and the Proponent
- 10 and the audience for giving me the time.
- 11 Take care and Happy St. Patrick's
- 12 Day!
- 13 CHAIRPERSON GRIFFITHS: Thank you,
- 14 Dr. Schmelzer. What is the -- oh, you've just
- 15 taken it off.
- DR. SCHMELZER: Oh, sorry.
- 17 CHAIRPERSON GRIFFITHS: Where is
- 18 that, the final slide?
- 19 DR. SCHMELZER: That's Crystal
- 20 Falls.
- 21 CHAIRPERSON GRIFFITHS: Okay.
- 22 Thank you very much for your presentation.
- So Mr. Crowley, is it? You're
- 24 going to be presenting on moose, right.
- Thank you.