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After flourishing during the second half of the twentieth century, many North Sea seabird popu-
lations are now in decline. Much evidence is accumulating that climate change is driving these 
negative trends in growth rate. Climate- driven changes in the physical environment may affect 
seabirds both directly and indirectly. Direct impacts such as increasingly common extreme weather 
events will result in negative physiological responses. However, climate effects on seabirds are more 
likely to be indirect and mediated by prey quality and availability. Mounting evidence suggests that 
climate impacts on lower trophic levels are altering the pathway of energy to seabirds. While the 
basis for changes in primary production are complex and uncertain, climate- driven changes in the 
availability of sandeels (primarily Ammodytes marinus) and the copepod Calanus finmarchicus, 
key prey species in adjacent trophic levels, appear to be causing a reduction in breeding success and 
growth rate in several British seabird species.

Keywords: pelagic food web, North Sea, trophic interactions, Ammodytes marinus, Calanus 
finmarchicus, seabird community, regime shift

Introduction

Numbers of many species of seabirds around the United Kingdom increased between 1970 and 
2000 (Figure 1). However, since the Seabird 2000 census (Mitchell et al. 2004), populations of 
some of the species have started to decline, such as the Atlantic puffin Fratercula arctica (Harris 
& Wanless 2011), northern fulmar Fulmarus glacialis, and great cormorant Phalacrocorax carbo. 
Others have continued to increase, for example, the common guillemot Uria aalge, razorbill Alca 
torda, and especially the northern gannet Morus bassanus. In Scotland, northern gannets are pos-
sibly the only species to increase in abundance in the past decade (Wanless & Harris 2012) and are 
continuing to form new colonies (Wanless et al. 2005b).
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Most surface- feeding seabird species in the northern North Sea have suffered breeding failure 
since 2003. In Shetland, similar declines in breeding success happened earlier, during the 1980s. 
Large pursuit- diving species have not been so affected (Heubeck 1989, Okill 1989). Consequences 
of such declines in breeding success only become apparent in the population numbers after a consid-
erable time lag, as these year- classes of birds mature and join the breeding population (Frederiksen 
et al. 2004, Mavor et al. 2005, 2006, 2008, Reed et al. 2006).
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Figure 1 Changes in the numbers of breeding seabirds in the United Kingdom 1969–2002 (JNCC 2014c). 
Percentage changes refer to coastal- nesting seabirds only; inland colonies were not surveyed during the 
Operation Seafarer (1969–1970) (Cramp et al. 1974) and the Seabird Colony Register (SCR) censuses (1985–
1988) (Lloyd et al. 1991). Manx shearwater, Leach’s storm petrel, and European storm petrel are omitted as 
they were not surveyed during the Operation Seafarer (1969–1970) and the SCR censuses (1985–1988). Survey 
methods for black guillemots during Operation Seafarer (1969–1970) were not comparable with Seabird 2000 
(1998–2002). Change from 2000 to 2012 (i.e., over the period since the last national census) was estimated 
from trends derived from the Seabirds Monitoring Programme sample of colonies; this analysis is only avail-
able for species with sufficient data to estimate trends accurately. *Change between censuses in 1984–1985 
and 2004–2005.
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The overall trends in numbers of breeding seabirds over recent decades mask some marked 
regional variations (Figure 2). Significant increases were observed in the breeding numbers of, for 
example, guillemots in England and Wales; however, the trend was the opposite for those breeding in 
Scotland. Within any one year, some species have bred successfully, and others have not. For a given 
species, some regions have produced successful breeding and others not. In some cases, a lack of 
consistency has even been found among species inhabiting the same region (Wanless & Harris 2012).

Climate change is considered to be playing a significant role in the declines in seabird breeding 
numbers (Russell et al. 2014). In particular, sea- surface temperatures (SSTs) in UK coastal waters, 
which have been rising between 0.1°C and 0.5°C per decade for the past 30 years (Dye et al. 2013), 
have shown a strong negative relationship with the demographic rates of several seabird species. 
For example, the productivity of northern fulmar and black- legged kittiwake Rissa tridactyla on 
the Scottish eastern coast shows a negative relationship with SST (Burthe et al. 2014). Furthermore, 
survival rates of kittiwakes, European shags Phalacrocorax aristotelis (Burthe et al. 2014), Atlantic 
puffins, guillemots, and razorbills (Lahoz- Monfort et al. 2011) are also strongly negatively corre-
lated with SST.

The physical environmental changes that accompany climate change may affect seabirds in a 
variety of direct and indirect ways. Direct effects include incidences of extreme weather events caus-
ing mass mortalities and damage to nests in breeding colonies (Frederiksen et al. 2008a, Wanless 
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Figure 2 Changes in the numbers of breeding seabirds in Scotland, England, and Wales during the period 
2000–2013 (JNCC 2014c). Change from 2000 to 2013 (i.e., over the period since the last national census) was 
estimated from trends derived from the Seabirds Monitoring Programme sample of colonies; this analysis is 
only available for species with sufficient data to estimate trends accurately (JNCC 2014c).
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& Harris 2012). Physiological responses to higher temperatures can be expected to cause changes 
in vital rates for population dynamics (Oswald et al. 2008, 2011). Population dynamics of long- lived 
seabird species are especially sensitive to adult survival (Lebreton & Clobert 1991, Sæther & Bakke 
2000, Ratcliffe et al. 2002, Furness 2003). Indeed, reduced overwinter survival rates for breeding 
Atlantic puffins on the Isle of May in 2006–2007 and 2007–2008, combined with an increase in 
immature mortality (Harris et al. 2013), were sufficient to explain a 30% reduction in breeding 
population between 2003 and 2008 (Harris & Wanless 2011). Synchrony in guillemot survival rates 
from different colonies around Britain that share overwintering areas provides further evidence that 
climate could be the key determinant of mortality (Reynolds et al. 2011).

In contrast, indirect effects may be mediated through prey quality and availability (Wanless 
et al. 2005a, Burthe et al. 2012), affecting growth rates and breeding success. These are referred 
to as bottom- up cascading trophic effects (Carpenter et al. 1985, Pace et al. 1999, Polis et al. 2000, 
Heath et al. 2014). The aim of this work is to review and synthesize the evidence for these climate- 
driven trophic cascade effects on seabirds in waters around the British Isles. In particular, evidence 
relating to the hypothesis that increasing climate- driven changes in phytoplankton and zooplankton 
have led to a decline since 2000 in the abundance of small planktivorous fish, especially sandeels 
(Ammodytes marinus), and hence to the observed changes in seabird breeding success, frequency of 
breeding, and survival is assessed (Figure 3). The matter is approached by addressing the coupling 
between successive trophic levels in the food web, beginning with the connection between seabirds 
and fish and working towards lower levels.

Seabirds etc.

7

9
12

11

10

45

6

83

2

1

Human fisheries

Herring

Climate

Phytoplankton

Zooplankton

Sandeel

Figure 3 Simplified diagram of some documented and probable trophic and climatic controls in the North 
Sea pelagic ecosystem (after Frederiksen et al. 2007). 1, Bottom- up control of zooplankton by phytoplankton 
(Richardson & Schoeman 2004); 2, bottom- up control of sandeel larvae by zooplankton (Frederiksen et al. 
2006); 3, bottom- up control of seabird breeding success by sandeels (Hamer et al. 1993, Frederiksen et al. 
2006); 4, top- down control of zooplankton by herring predation (Arrhenius 1997); 5, bottom- up control of 
herring by zooplankton (Corten 2001, Beaugrand 2004); 6, top- down control of sandeels by herring predation 
(Frederiksen et al. 2007); 7, top- down control of herring by fisheries (Jennings et al. 2001); 8, local top- down 
control of sandeels by human fisheries (Rindorf et al. 2000); 9, climatic control of herring recruitment (Sætre 
et al. 2002); 10 and 11, climatic control of phytoplankton and zooplankton (Edwards & Richardson 2004, 
Hays et al. 2005); 12, climatic control of sandeel recruitment (not known if direct) (Arnott & Ruxton 2002).
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Connections between seabirds and fish

The majority of open- sea bird species around Britain are essentially piscivorous. The prey items 
brought back to breeding sites by the 26 major seabird species were analysed during the Seabird 
2000 survey (1998–2002) (Table 1) and found to consist mostly of sandeels (mainly Ammodytes 
marinus), small clupeoid fish, and zooplankton. Prey were either self- caught (i.e., taken alive from 
the sea) or stolen from other birds (Furness 1987, Davis et al. 2005). Exceptions were scavenging 
species such as northern fulmars and gulls, which feed opportunistically and rely partly on dis-
carded fish and offal from commercial fishing vessels (Camphuysen & Garthe 1997, Furness 2003), 
and some of the diving species, whose diet includes a proportion of benthic organisms (Furness 
et al. 2012).

There is abundant evidence that fish communities are being affected by climate change. 
Geographical shifts in the distribution of many shelf- sea fish communities around the British Isles 
have been well documented. Broadly speaking, these changes can be viewed as a response to warm-
ing sea temperatures to maintain individuals in a preferred temperature range (Hedger et al. 2004, 
Perry et al. 2005, Poulard & Blanchard 2005, Desaunay et al. 2006, Heath 2007, Dulvy et al. 2008). 
In some areas, this is manifested as a polewards shift in distribution or a move into deeper water. 
However, local topography and hydrography may limit the extent of such shifts.

Polewards shifts in distribution lead to decreases in abundance at the southern edge of the 
geographic range of a species and increases at the northern edge (in the Northern Hemisphere). 
Temperature- associated species- level changes in abundance that may be accounted for in this 
way have been identified in 39 of 50 of the most common fish species in the North Sea (Simpson 
et al. 2011). Catches of warm- water species (e.g., European anchovy Engraulis encrasicolus, sar-
dine Sardina pilchardus, and striped red mullet Mullus surmuletus) all increased in the North Sea, 
coinciding with increased temperatures after 1995 (International Council for the Exploration of 
the Sea [ICES] 2007). Moreover, statistical modelling shows northwards movements for Atlantic 
horse mackerel Trachurus trachurus, European anchovy, European sprat Sprattus sprattus, pollack 
Pollachius pollachius, common sole Solea solea, saithe Pollachius virens, and turbot Scophthalmus 
maximus between the 1960s and the period 2000–2005 (Lenoir et al. 2011). Northwards move-
ments in the geographical range of these species, with the exception of pollack, are predicted to 
increase substantially under projected Intergovernmental Panel on Climate Change (IPCC) changes 
in SST (IPCC 2007). Some fish species now inhabit areas where they were absent prior to the 1980s. 
Examples include anchovy and sardine (Beare et al. 2004a), striped red mullet (Beare et al. 2004b), 
and bluemouth Helicolenus dactylopterus (Mamie et al. 2007).

Although many of the fish species mentioned are not directly preyed on by seabirds, their 
responses to climate change may be significant for understanding the impacts on birds because they 
are potential competitors for the main food of piscivorous birds: the common sandeel Ammodytes 
marinus. This species is currently at the southern edge of its latitudinal range around the British 
Isles (Fishbase 2014), but unlike most other fish species, sandeels are not free to move into deeper 
waters in response to warming sea temperatures because they are tightly associated with sandy sed-
iments with a rather narrow range of grain size composition (Wright et al. 2000, Holland et al. 2005, 
Greenstreet et al. 2010b). In addition, sandeel stocks display a complex spatial population structure, 
which may further limit their capacity to adjust their distribution in response to warming. For 
example, the North Sea stock is composed of seven distinct populations, each exhibiting different 
population dynamics (Boulcott et al. 2007, ICES 2010, 2013, Boulcott & Wright 2011). Since 2000, 
some sandeel populations have decreased in abundance in parts of the northern North Sea, primar-
ily Shetland and the north- western North Sea (Figure 4), but not in the southern North Sea. The 
drivers behind patterns of decline in sandeels are complex and may include a combination of cli-
mate and fishing impacts.
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Table 1 Names and life history characteristics of seabird species regularly breeding in the British 
Isles included in the JNCC’s Seabird Monitoring Programme and the Seabird Colony Register

Common 
name Scientific name General diet

Clutch 
size 

(no. eggs)
Age at first 

breeding (yr)
Adult survival 

rate (yr–1)
Lifespan 

(yr)

Red- throated 
diver

Gavia stellata Primarily fish, 
captured by 
seizing in 
bill,;also frogs, 
large 
invertebrates

2 3 (Okill 
1994)

0.840 
(Hemmingsson 
& Eriksson 
2002)

9

Northern 
fulmar

Fulmarus 
glacialis

Crustaceans, 
squid, fish, offal, 
carrion mostly 
from surface

1 9 (Dunnet & 
Ollason 
1978a)

0.972 (Dunnet 
& Ollason 
1978b)

44

Manx 
shearwater

Puffinus puffinus Mostly small fish 
and squid, also 
small crustaceans 
and offal from 
surface or diving

1 5 (Thompson 
1987)

0.905 (Brooke 
1990)

15

European 
storm petrel

Hydrobates 
pelagicus

Mainly surface 
plankton, small 
fish; feeds from 
water surface 
without alighting

1 4–5 (Scott 
1970)

0.870 (Cramp 
et al. 
1977–1994)

11–12

Leach’s storm 
petrel

Oceanodroma 
leucorhoa

Mainly surface 
plankton, small 
fish; feeds from 
water surface 
without alighting

1 4–5 
(Huntington 
& Burtt 
1972)

0.880 (Furness 
1984)

12–13

Northern 
gannet

Morus bassanus Fish (up to 30 cm), 
usually plunging 
from heights of 
10–40 m

1 5 (Alerstam 
1990)

0.919 (Wanless 
et al. 2006)

17

Great 
cormorant

Phalacrocorax 
carbo

Fish, mostly by 
diving from 
surface

3–4  2–4 (Cramp 
1977)

0.880 
(Frederiksen & 
Bregnballe 
2000)

10–12

European shag Phalacrocorax 
aristotelis

Fish, mostly by 
diving from 
surface

3 3 (Potts et al. 
1980)

0.878 (Harris 
et al. 1994)

11

Arctic skua Stercorarius 
parasiticus

Summer: mostly 
birds, small 
mammals, insects

Winter: fish, 
mostly by piracy 
from other birds

2 (Furness 
1987)

4 (Lloyd 
et al. 1991)

0.886 
(O’Donald 
1983)

12

Great skua Catharacta skua Mostly fish, 
obtained from 
sea, scavenging 
or by piracy

2 (Furness 
1987)

7 (Klomp & 
Furness 
1991)

0.888 (Ratcliffe 
et al. 2002)

15

(Continued)
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Table 1 (Continued Names and life history characteristics of seabird species regularly breeding 
in the British Isles included in the JNCC’s Seabird Monitoring Programme and the Seabird 
Colony Register

Common 
name Scientific name General diet

Clutch 
size 

(no. eggs)
Age at first 

breeding (yr)
Adult survival 

rate (yr–1)
Lifespan 

(yr)

Mediterranean 
gull

Larus 
melanocephalus

Summer: insects
Winter: marine 
fish and molluscs

3 NA NA NA

Black- headed 
gull

Larus ridibundus Opportunist, 
insects, 
earthworms, also 
plant material 
and scraps

2–3 2–5 (Clobert 
et al. 1994)

0.900 
(Prévot- 
Julliard et al. 
1998)

11–14

Mew gull Larus canus Invertebrates, 
some fish; 
preference for 
foraging on 
ground

3 3–4 (Cramp 
& Simmons 
1983)

0.860 
(Bukacinski & 
Bukacinska 
2003)

10–11

Lesser 
black- backed 
gull

Larus fuscus Omnivorous; often 
feeds at rubbish 
dumps or on 
shoals of fish

3 4–5 (Harris 
1970)

0.913 (Wanless 
et al. 1996)

15–16

Herring gull Larus argentatus Omnivorous, but 
mostly animal 
material; also 
scavenges and 
kleptoparasitizes

3 4–5 
(Chabrzyk 
& Coulson 
1976)

0.880 (Wanless 
et al. 1996)

12–13

Great 
black- backed 
gull

Larus marinus Omnivorous, but 
mostly animals, 
including other 
seabirds; also 
scavenges and 
kleptoparasitizes

2–3 4–5 (Cramp 
& Simmons 
1983)

NA NA

Black- legged 
kittiwake

Rissa tridactyla Mainly marine 
invertebrates and 
fish

2 3–4 (Coulson 
& White 
1959)

0.882 (Harris 
et al. 2000a)

11–12

Sandwich tern Sterna 
sandvicensis

Fish; mostly 
plunge- diving

1–2 3 (Snow & 
Perrins 
1998)

0.898 (Robinson 
2010)

12

Roseate tern Sterna dougallii Fish; mostly 
plunge- diving

1–2 3–4 
(Spendelow 
1991)

0.855 (Ratcliffe 
et al. 2008)

9–10

Common tern Sterna hirundo Mostly fish, also 
crustaceans in 
some areas, 
mostly by 
plunge- diving

2–3 3–4 (Nisbet 
et al. 1984)

0.900 (Becker 
& Ludwigs 
2004)

12–13

Arctic tern Sterna 
paradisaea

Fish, crustaceans, 
and insects

1–2 4 (Coulson & 
Horobin 
1976)

0.900 (Balmer 
& Peach 1997)

13

(Continued)
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The decrease in stocks of sandeels in the north- western North Sea since the late 1990s has 
occurred despite a substantial reduction in fishing activity, suggesting a strong environmental 
effect. Although larval abundance, and by inference spawning stock biomass, decreased after 2001, 
recruitment was maintained due to an increasing larval survival rate (Heath et al. 2012). The num-
ber of sandeels less than age 1 (year) around the time of seabird breeding therefore would not have 
changed dramatically over time, yet the number of older sandeels continued to decline.

Two main factors have been proposed as responsible for the decline in sandeel abundance. Data 
from chick- feeding Atlantic puffins and Continuous Plankton Recorder samples indicate that the 
size- at- date of sandeels less than age 1, hereafter referred to as ‘0 group’, has declined substantially 
since 1973. However, it is unclear what the exact cause of this decline might be (Wanless et al. 
2004). A decline in 0-group size- at- date is presumably due to changes in hatch or spawning dates 
or changes in growth rate (Frederiksen et al. 2011). However, there is no evidence of trends in hatch 
dates on the Scottish eastern coast (Heath et al. 2012), so the proximate cause for the decline in 
0-group size- at- date must be a reduction in growth rates.

Alternatively, it is noted that sandeels undergo an overwinter fasting period between late sum-
mer and the spawning period in January, during which they remain buried in the seabed to evade 
predation. Individuals show significant weight loss during this period (Boulcott et al. 2007, Boulcott 

Table 1 (Continued Names and life history characteristics of seabird species regularly breeding 
in the British Isles included in the JNCC’s Seabird Monitoring Programme and the Seabird 
Colony Register

Common 
name Scientific name General diet

Clutch 
size 

(no. eggs)
Age at first 

breeding (yr)
Adult survival 

rate (yr–1)
Lifespan 

(yr)

Little tern Sterna albifrons Small fish and 
invertebrates; 
often hovers 
before 
plunge- diving

2–3 3 (Massey 
et al. 1992)

0.899 
(Tavecchia 
et al. 2006)

12

Common 
guillemot

Uria aalge Mostly fish, 
usually taken 
from depths up to 
60 m

1 5 (Olsson 
et al. 2000)

0.946 (Harris 
et al. 2000b)

23

Razorbill Alca torda Fish, some 
invertebrates

1 4–5 (Lloyd 
1976)

0.900 
(Chapdelaine 
1997) 

13–14

Black 
guillemot

Cepphus grille Mostly fish, also 
crustaceans, 
especially in the 
Arctic

1–2 3–4 (Ewins 
1988)

0.870 
(Frederiksen & 
Petersen 1999)

10–11

Atlantic puffin Fratercula 
arctica

Mostly fish, also 
crustaceans, 
especially in the 
Arctic

1 4–6 (Harris 
1983, 
Johnsgard 
1987)

0.924 (Harris 
et al. 1997)

17–19

Source: Joint Nature Conservation Committee (JNCC). 2014c. Seabird population trends and causes of change: 1986–2013 
report. Peterborough, UK: Joint Nature Conservation Committee. Online. http://www.jncc.defra.gov.uk/ page-3201 
(accessed 17 October 2014).General diet description taken from Robinson (2005). Data on seabird clutch size is 
taken from Snow & Perrins (1998) and Harrison (1975) unless stated otherwise. Lifespan is calculated as λ = 
μ – 1/ln(φ), where λ = lifespan, μ = age at first breeding, φ = adult survival rate (Robinson 2005).

Note: All except the red- throated diver were included in the Seabird 2000 Census or Seabird Colony Register.
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& Wright 2008), and it is speculated that increased temperature will increase this rate of loss due 
to elevated metabolism. The energy reserves required to sustain the animals through the winter 
fast must be accumulated the previous summer, so unless warming is accompanied by increased 
scope for summer feeding, which does not appear to be the case (Wanless et al. 2004, Boulcott 
et al. 2007), then the net effect is likely to be reduced overwinter survival (van Deurs et al. 2011). 
The recruiting age class in the population, entering its first winter, may be particularly vulnerable 
to overwintering mortality. Fish older than age 1 usually enter the overwintering period in August 
and remain buried in the sediment until April the following year, emerging only to spawn in January 
(Winslade 1974). However, many young- of- the- year sandeels may not begin to overwinter until 
December (Macer 1966, Reeves 1994, Kvist et al. 2001), suggesting that they require extra time to 
accumulate the necessary energy reserves.

Overwintering mortality may also have played a role in declining sandeel abundances around 
the Shetland Isles because sandeel growth rates are much lower at Shetland than elsewhere 
around Britain (Wright & Bailey 1993, Bergstad et al. 2002). However, recruitment failure appears 
to be the more likely cause, and increased predation by fish that consume sandeel larvae could 
explain the decline in this region (Frederiksen et al. 2007). Herring Clupea harengus are known 
to feed on larval sandeels (Hardy 1924, Last 1989), and stocks of herring have increased from 
100,000 tonnes in the late 1970s to 2 million tonnes in 2004 (ICES 2004), in approximately inverse 
relationship with sandeel abundance around Shetland. Such a mirror- image pattern may indicate a 
top- down effect of herring predation on sandeel in the northern North Sea. There are precedents for 
such a phenomenon elsewhere; for example, herring predation has been implicated in the recruit-
ment variability of Barents Sea capelin Mallotus villosus (Gjøsæter & Bogstad 1998). However, 
counterevidence is that although adult herring biomass has been high since 2000, the survival and 
growth rate of herring larvae have declined (Payne et al. 2009, 2013), which might suggest a com-
mon environmental factor affecting both sandeels and herring. Other possible reasons for recruit-
ment failures of the northern sandeel populations are changes in the dispersal patterns of larvae 
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Figure 4 Catch per unit effort (CPUE) of sandeel larvae off the Firth of Forth (bars) and abundance of early 
larvae (3–7 days old) at Stonehaven (symbols and lines). CPUE data from 1990 to 2000 were derived from 
analysis of vessel logbooks from the Danish sandeel fishery. CPUE data from 2000 onwards were taken from a 
supervised monitoring fishery. CPUE data for 2006 and 2007 were taken from H. Jensen, Danish Institute for 
Fisheries Research. Larval abundance was measured at Stonehaven (56°57.83’N 2°6.74’W) and is taken from 
Heath et al. (2012). The dotted line delineates the fishery closure.
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from spawning to settlement sites (Proctor et al. 1998, Christensen et al. 2009) or changes in the 
phenology of the spring plankton bloom in relation to burial and spawning times of the sandeels 
(Greenstreet et al. 2006, Scott et al. 2006).

Data from other regions support the idea that a variety of factors may be causing the climate- 
related changes in sandeel abundances. Recruitment is strongly inversely related to winter tem-
peratures for the sandeel stocks in the central North Sea, especially around Dogger Bank (Arnott 
& Ruxton 2002), although the causal mechanism is not known (ICES 2013). In contrast, there is 
little evidence of direct climate impacts on southern stocks, although changes in growth rates in 
the southern North Sea have been linked to fluctuations in zooplankton abundance (van Deurs 
et al. 2014).

Turning to the effects of changes in fish abundance and community composition on seabird pop-
ulations, the evidence is strikingly clear. Sandeels constitute a significant proportion of the diet for 
many North Sea seabirds during the breeding season (Wanless et al. 1998, Furness & Tasker 2000, 
Furness 2002, Frederiksen et al. 2004, Sandvik et al. 2005, Lahoz- Monfort et al. 2011). Between 
1991 and 2011 on the Isle of May, sandeels comprised approximately 75% of the diet of European 
shag, kittiwake, and Atlantic puffins (Newell et al. 2013). Some seabirds, such as kittiwakes and 
Arctic skuas Stercorarius parasiticus, are highly sensitive to fluctuations in sandeel abundance; 
others, such as the northern gannet, appear less affected (Furness & Tasker 2000). The most sensi-
tive seabirds are those with high foraging costs, little ability to dive below the sea surface, little 
‘spare’ time in their daily activity budget, short foraging range from the breeding site, and little abil-
ity to switch diet (Furness & Tasker 2000). The well- documented declines in breeding productivity 
of kittiwakes, shags, and Atlantic puffins (Lahoz- Monfort et al. 2013) are highly correlated with the 
availability of sandeels, especially the older age classes of sandeel (Pinaud & Weimerskirch 2002, 
Frederiksen et al. 2006, 2013).

In addition to interspecific variation in the importance of sandeel in the seabird diet, there are 
strong regional variations. In northern UK waters, sandeels are the only significant prey for sea-
birds. For example, sandeels have been the only common high- lipid schooling fish around Shetland 
in recent decades. Breeding success of most seabirds is therefore strongly related to sandeel abun-
dance in that region (Hamer et al. 1993, Davis et al. 2005). Seabirds off south- eastern Scotland have 
access to other fish prey (e.g., young herring and sprat; Bull et al. 2004, Harris et al. 2004, Wilson 
et al. 2004), but sandeels are still the main prey (Wanless et al. 1998). However, in south- western 
British waters there are higher abundances of alternative prey such as sprat and juvenile herring, 
so the linkage to sandeel availability is correspondingly weaker. However, it cannot be ruled out 
that climate change could result in the growth of sprat or juvenile herring populations in northern 
waters. In fact, a pronounced increase in abundance of European sprat in the North Sea between 
2000 and 2005 can be explained by increases in temperature (Lenoir et al. 2011). During this time, 
guillemots at Fair Isle, between Orkney and Shetland, underwent a dietary shift (Heubeck 2009), 
consuming more gadoids and sprat and fewer sandeels, than previously. Moreover, records on guil-
lemot chick diet composition from the Isle of May in the Firth of Forth indicate that sprat have 
accounted for the majority of chick diet since 2000 (Anderson et al. 2014). While this is probably a 
response to lack of sandeels, it is possible that guillemot diet partially reflects their preference for 
sprat. Indeed, sprat might actually represent a higher- quality prey resource than sandeels (Smout 
et al. 2013). For example, in 2000 the guillemots in the Firth of Forth switched to sprat even though 
they were two orders of magnitude less abundant than sandeels (Greenstreet et al. 2010a).

In the north- western North Sea, other potential effects on seabirds arise from the apparent 
changes in growth rates of sandeels since the 1970s. The decline in size- at- date of the recruit-
ing 0-group stages leads to a mismatch between the timing of seabird breeding and availability 
of adequate prey. The weight- specific energy content of sandeel is related to their body size, so 
slower growth rates mean declining calorific content of prey fed to chicks on a given day of the year 
(Wanless et al. 2004, Burthe et al. 2012). Interestingly, there has been a trend towards later breeding 
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in several species (Burthe et al. 2012), partially mitigating the decline in prey length. Nevertheless, 
chicks of guillemot, shag, kittiwake, Atlantic puffin, and razorbill have all suffered net reductions 
in energy value because of this decline in sandeel length (Burthe et al. 2012).

In addition to effects on seabird chicks, a lack of 0-group sandeel availability and quality can 
affect adult seabird mortality, which is particularly influenced by prey availability during the breed-
ing season. This is because seabirds must attain a sufficient level of body energy to meet breeding 
costs (Oro & Furness 2002, Ratcliffe et al. 2002). In Shetland, sandeel abundance is related to adult 
survival of various species, in particular kittiwake and great skua Catharacta skua (Oro & Furness 
2002, Ratcliffe et al. 2002).

Other fish species responding to climate change may have indirect effects on birds by inter-
fering with the relationship between sandeels and seabirds. This interference may take the form 
of competition for sandeels as prey (Greenstreet et al. 2010a) or being present as an abundant but 
less- nutritious alternative prey. The much- reported influx of snake pipefish Entelurus aequoreus 
into European waters in 2003 (Lindley et al. 2006, Kloppmann & Ulleweit 2007, Harris et al. 2008, 
van Damme & Couperus 2008) represents an example of the latter. Trawl survey records show 
that catches of snake pipefish began to increase off north- western Scotland in 2003 and over the 
entire North Sea by 2007 (Figure 5). Catches declined sharply in 2009. A simultaneous population 
explosion and subsequent contraction happened in the Barents Sea (Høines et al. 2009). It is unclear 
why snake pipefish numbers increased. However, Continuous Plankton Recorder samples show that 
high numbers of larval and juvenile stages extended as far west as the Mid- Atlantic Ridge and may 
have coincided with a rise in sea temperatures between January and September, when the eggs are 
developing and the larvae are growing in the plankton (Kirby et al. 2006). Alternatively, a shift 
in zooplankton species composition may have helped facilitate the explosion of pipefish numbers 
(van Damme & Couperus 2008).

In 2003, snake pipefish began to appear in the diet of several seabird species (Harris et al. 2007, 
Anderson et al. 2014). It is unknown whether seabirds mistook pipefish for their usual prey or whether 
they were capturing them because sandeels and clupeoid fish were in short supply. In either case, the 
pipefish represented a poor- quality resource: low in lipid, bony, and difficult to digest (Harris et al. 
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2008). Previous work has shown that most seabird colonies have less- successful breeding years when 
chicks are fed on prey with lower- than- average energy content (Wanless et al. 2005a).

Connections between fish and zooplankton

The principal role of zooplankton in the food web is as a vector for transferring primary produc-
tion to fish. Sandeels are likely to be bottom- up limited by zooplankton abundance (Frederiksen 
et al. 2006). In particular, the crucial larval stage is more likely to be affected by bottom- up effects 
through the plankton (Pitois et al. 2012).

During the 1980s, the North Sea ecosystem underwent a regime shift that resulted in pro-
nounced changes to the composition of the fish and plankton community (Beaugrand 2004). These 
changes have been ascribed to increased sea temperature (Beaugrand et al. 2002, Perry et al. 
2005). Moreover, recent decades have seen pronounced northwards shifts in the range of calanoid 
copepods (Reid et al. 1998, 2001, Beaugrand et al. 2002, Drinkwater et al. 2003, Reygondeau & 
Beaugrand 2011). The mean rate of northwards movement for some north- eastern North Atlantic 
species assemblages between 1958 and 2005 has been estimated at roughly 23 km yr–1 (Beaugrand 
et al. 2009). During this time, the critical threshold separating boreal and temperate zooplankton 
systems has moved northwards by 22 km yr–1 (Beaugrand et al. 2008).

The calanoid copepod Calanus finmarchicus is currently vital in the diet of sandeel larvae, as 
larval survival depends specifically on the abundance of C. finmarchicus, not overall abundance 
of Calanus spp., or C. helgolandicus (van Deurs et al. 2009). However, despite being previously 
dominant in the North Sea, C. finmarchicus, has declined in biomass by 70% since the 1960s. 
Species with warmer- water affinities (e.g., C. helgolandicus) are moving northwards to replace 
C. finmarchicus, but these species are not as numerically abundant or nutritionally beneficial (lower 
lipid contents) to higher trophic levels. Moreover, recent temperature increases have reduced the 
size of zooplankton. Declines in sandeel length have been linked with these changes (van Deurs 
et al. 2014). A time series of sandeel length at age in the southern North Sea shows a decrease in 
the late 1980s, around the time when the mean size of calanoid copepods decreased by a factor of 
two (Beaugrand et al. 2003). This decrease in copepod size was an effect of the regime shift that 
took place in the North Sea in the late 1980s, associated with a switch in the NAO (North Atlantic 
Oscillation) index from a negative to a positive phase (Reid et al. 2001, Beaugrand et al. 2002, 2003, 
Beaugrand & Reid 2003, Beaugrand 2004).

Despite the documentation of changes in species distribution, there is little clear evidence 
of changes in overall zooplankton production in the North Sea. Trends in zooplankton produc-
tion off the Scottish eastern coast do not reflect the pattern of decline in sandeels (Heath et al. 
2012, O’Brien et al. 2013). Apart from changes in zooplankton abundance, changes in seasonality 
(van Deurs et al. 2009), size (Beaugrand et al. 2003), and lipid content of zooplankton (Wanless 
et al. 2005a, Beaugrand et al. 2009) could all affect sandeel populations. Zooplankton community 
production is exceptionally difficult to estimate, even by direct experimental measurements and 
certainly from just data on species abundances.

Northwards shifts of plankton species are expected to continue with increasing sea tempera-
tures (Reygondeau & Beaugrand 2011). How these changes will affect higher trophic levels remains 
unclear. However, it is thought that the retreat of Calanus finmarchicus will be damaging to sandeel 
populations (van Deurs et al. 2009) and, ultimately, seabirds (Frederiksen et al. 2013). A recent niche 
model study (Frederiksen et al. 2013) showed that the breeding success of kittiwakes and Atlantic 
puffins on the Isle of May is significantly related to environmental suitability for C. finmarchicus 
(van Deurs et al. 2009). Therefore, it may become increasingly difficult for several boreal seabird 
species to maintain adequate breeding success as this Calanus species continues its retreat.
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The future of sandeels in the North Sea will rest on whether a suitable replacement prey can 
be found, with the most viable candidate being Calanus helgolandicus. However, C. finmarchicus 
abundance peaks in spring (Bonnet et al. 2005) concurrently with mean larval hatch date (Heath 
et al. 2012), whereas C. helgolandicus abundance peaks in autumn (Bonnet et al. 2005). Therefore, 
a mismatch between larval emergence and prey availability may occur if C. helgolandicus becomes 
the dominate prey species for sandeels.

Geographical shifts in plankton species can be related to environmental changes (Beaugrand & 
Helaouët 2008). There can be reasonable confidence in predictions of shifts in geographical distribu-
tions for different climate change scenarios, subject to the assumption that the under lying processes 
governing species’ environmental preferences and tolerances (their ‘environmental  envelope’) will 
remain constant in the future (Davis et al. 1998, Pearson & Dawson 2003). In addition, it seems rea-
sonably certain that the zooplankton diversity in waters around the British Isles will increase with 
continued warming (Beaugrand et al. 2008), with a progressive shift towards smaller- size plankton. 
A shift towards smaller zooplankton may lead to reductions in trophic transfer efficiency due to 
increased food- chain length.

Ocean modelling predicts a reduction in zooplankton biomass in the North Sea over the next cen-
tury (Chust et al. 2014). These changes are thought to arise via bottom- up amplification of negative 
climate- driven impacts on phytoplankton (Chust et al. 2014). Therefore, it is important to understand 
how climate change may affect zooplankton indirectly through changes in primary production.

Connections between zooplankton and phytoplankton

The production of zooplankton, fish, and higher trophic levels in the marine ecosystem must 
ultimately be related to primary production and the efficiency of transfer between trophic levels 
(Aebischer et al. 1990, Schwartzlose et al. 1999, Chavez et al. 2003). Hence, comparing across 
ecosystems in the north- western Atlantic, there is a positive correlation between long- term average 
chlorophyll concentration and fishery yield (Frank et al. 2005). In the case of sandeels, it is clear 
that primary production drives stock biomass in some ecosystems (Eliasen et al. 2011). However, 
within individual ecosystems, the relationship between primary production and fisheries yield var-
ies over time depending on a range of factors affecting the transfer of energy up the food web and 
the intensity of exploitation of the fish stocks.

Over several decades, changes in phytoplankton species and communities in the North Atlantic 
have been associated with temperature trends and variations in the NAO index (Beaugrand & Reid 
2003). These changes have included the occurrence of subtropical species in temperate waters, 
changes in overall phytoplankton biomass and seasonality, and changes in the ecosystem function-
ing and productivity of the North Atlantic (Edwards et al. 2001, Beaugrand 2004). In the North Sea, 
overall phytoplankton biomass has increased in recent decades (Edwards et al. 2001), and there has 
been a concurrent increase in smaller flagellates, which are promoted by warmer and more stratified 
conditions (Edwards & Richardson 2004). Over the whole north- eastern Atlantic, there has been an 
increase in phytoplankton biomass with increasing temperatures in cooler regions, but a decrease 
in phytoplankton biomass in warmer regions (Barton et al. 2003). However, nutrient concentrations 
are likely to limit any sustained positive response to warming (O’Brien et al. 2012).

Unfortunately, it is only possible to speculate on how climate change may indirectly impact zoo-
plankton through changes in phytoplankton. For example, it is possible that climate- driven changes 
in phytoplankton and zooplankton phenology (Edwards & Richardson 2004) may reduce prey 
availability for zooplankton. The key point is clear evidence that changes in climate have already 
impacted phytoplankton, resulting in zooplankton changes, remains thin.
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Discussion

There is much evidence to suggest that climate- driven trophic cascades have already affected sea-
birds in the waters around the British Isles. Whilst the basis for changes being driven by primary 
production are complex and uncertain, there is growing evidence of direct climate impacts on zoo-
plankton and the immediate prey of seabirds. The key route of energy transfer to many of the main 
seabird species is through Calanus finmarchicus and Ammodytes marinus. Climate change is dis-
rupting this pathway of energy transfer and appears to be causing a decline in breeding success and 
survival of several important seabirds around the British Isles, primarily those in northern areas 
(e.g., the eastern coast of Scotland).

In the short term, it can be predicted with reasonable confidence that the recent succession of 
poor breeding years will propagate through seabird populations to cause a decline in breeding num-
bers. Beyond this, changes will depend on the balance between breeding success and adult survival. 
The future patterns of seabird breeding success and survival may depend critically on the scope 
for feeding on alternative prey if sandeel stocks do not recover over time with continued warm-
ing. However, the strength of resilience to food shortages may vary among species. For example, 
kittiwakes are sensitive to reductions in sandeel availability (Furness & Tasker 2000), while adult 
guillemots seem able to maintain provisioning of their chicks despite fluctuating abundances of key 
prey (Smout et al. 2013). Interspecific variation in sensitivity to reductions in sandeel abundance 
may explain why climate effects appear to be species specific (Lahoz- Monfort et al. 2011), assum-
ing that sandeel abundance is negatively correlated with climate indices. Winter NAO and SST 
are contributing to synchrony, as well as desynchrony, in survival rates of auks (Alcidae) off the 
Scottish eastern coast (Lahoz- Monfort et al. 2011).

Continued decline in sandeel quality and abundance may cause the North Sea seabird com-
munity to become increasingly dominated by species least reliant on sandeels (Furness & Tasker 
2000). The increase in populations of the northern gannet in recent decades may be an example of 
this (Wanless et al. 2005b, Murray et al. in press). These birds are insensitive to reductions in sand-
eel availability, owing in part to their high ability to switch diet (Furness & Tasker 2000). Northern 
gannets are also the largest seabirds in the North Atlantic. Therefore, a trend towards a seabird 
community dominated by larger seabirds contrasts strongly with observed trends in prey length in 
lower trophic levels.

The regional pattern of decline in seabird numbers is strikingly similar to the decline in sandeel 
populations. Regional differences in the strength of bottom- up regulation may provide an explana-
tion. In the Irish Sea, Celtic Sea, and the English Channel, there appears to be little evidence of 
bottom- up regulation (Lauria et al. 2013). However, evidence for bottom- up effects has been found 
in the north- western North Sea (Frederiksen et al. 2006), which could be indicative of different 
oceanographic conditions (Lauria et al. 2013). Climate change impacts on lower trophic levels may 
therefore affect seabird numbers in the northern North Sea but have little effect on seabirds in 
southern areas.

While the predicted short- term increase in sprat abundance around Britain in response to 
warming (Lenoir et al. 2011) may mitigate a shortage of sandeels, it probably does not represent a 
long- term solution for seabirds. Sprat are predicted to disappear from these waters by the end of the 
twenty- first century, with their distribution shifting to the Barents Sea (Lenoir et al. 2011). In fact, 
warm- water midtrophic fishes such as anchovies (Lenoir et al. 2011) will likely be performing the 
ecosystem role vacated by sandeels and sprat. Although these fishes could potentially fill the void 
left by sprat and sandeels in seabird diets, whether or not there will be a smooth transition in prey 
is unknown. Consistent recruitment failure of herring (Payne et al. 2009, 2013) places in doubt the 
viability of this species as alternative prey for seabirds. Many seabirds are able to prey on pisci-
vorous demersal fish like whiting (Merlangius merlangus), but these have a low energy density, and 
the body condition of chicks is much poorer in years when whiting are the main prey (Harris 1980).
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In the case of seabirds that feed opportunistically by scavenging at fishing vessels (especially 
great skuas, northern fulmars, great black- backed gulls Larus marinus), part of the impact on their 
breeding success may be due to reduced amounts of fishery discards and offal in recent years 
(Votier et al. 2004, 2007, Käkelä et al. 2005, 2007, Furness 2006, 2007). Although these seabirds 
prefer to feed on sandeels, they turn to fishery offal and discards as an alternative food, and in the 
last few years, there have been large reductions in amounts of discards and offal provided to sea-
birds around the British Isles at a time when sandeels have also declined. Great skuas appear to have 
responded to this situation by increasingly killing other seabirds but have also suffered breeding 
failures due to food shortage, part of which results from the fact that great skuas will kill chicks of 
neighbouring conspecific pairs. The depredations on other seabirds will also reduce their breeding 
success, as chicks have a much lower chance of surviving if a parent has been killed during the 
breeding season. Although gannets mainly feed on pelagic fish in summer, discards of unwanted 
catches from fishing vessels make up a significant component of the diet in winter. A trend for 
gannets to range further south in winter than they did previously may be related to reductions in 
discarding (Kubetzki et al. 2009).

In 2014, the Common Fisheries Policy (CFP) of the European Union was re- formed to include 
a complete ban on fishing ‘discards’ (i.e., an obligation was imposed to record and land all catches 
of species subject to catch limits). This applied to pelagic species from January 2015, will apply to 
most valuable demersal species (e.g., cod Gadus morhua, hake Merluccius merluccius, and sole) 
from January 2016, and to all other species from January 2019 (European Commission 2013). This 
will almost certainly have a major impact on many seabird populations throughout Europe that are, 
at the moment, reliant on discards. Species native to the north- eastern Atlantic that currently exploit 
fishery discards extensively are kittiwakes, herring gulls Larus argentatus, the lesser black- backed 
gull Larus fuscus, the great black- backed gull, the great skua, the northern fulmar, and the northern 
gannet (Bicknell et al. 2013). It seems likely that the cessation in discards could slow the sustained 
growth in gannet populations.

Evidence suggests that anthropogenic and climate impacts on seabirds could be additive 
(Frederiksen et al. 2004, Votier et al. 2005). On the Scottish eastern coast, the species most vulner-
able to these combined threats are northern fulmars, kittiwakes, and shags (Burthe et al. 2014). The 
vital rates (e.g., growth and survival rates) of these species have been decreasing with rising tem-
perature, most likely through changes in prey such as sandeels. To ameliorate any declines in these 
demographic parameters, efforts to safeguard vital seabird prey around important colonies, such as 
the Isle of May, could be put in place.

The most notable example of such a measure is the sandeel fishery closure off the eastern 
coast of Scotland in 2000. Established with the aim of avoiding depletion of the sandeel stock, a 
substantial area covering approximately 21,000 km2 was closed to sandeel fisheries (Frederiksen 
et al. 2008b, Greenstreet et al. 2010a). However, closing the area to fishing has not been sufficient to 
ensure high sandeel abundance (Figure 4).

Recent measures have been implemented to protect marine habitats adjacent to seabird colo-
nies. In 2009, the boundaries of 31 of the Special Protection Areas (SPAs) designated for seabird 
breeding colonies in Scotland were extended seawards (Scottish Natural Heritage 2009); however, 
these expanded areas are extremely small (extending to < 5 km off shore) and therefore may not 
effectively safeguard seabird prey. This is especially true for sandeel- feeding seabirds because of 
the patchiness of sandeel habitat. Moreover, many seabirds have foraging ranges that span many 
tens of kilometres (Thaxter et al. 2012).

In addition to protecting sandeels in the vicinity of seabird colonies, measures to protect sources 
of sandeel larvae that are exported to these areas can be put in place. Recently, two marine pro-
tected areas (MPAs), to the north- west of the Orkney Islands (59°31′N 3°14′W) and around Turbot 
Bank (off the north- eastern coast of Scotland, 57°23′N 0°56′W), have been established with the 
aim of protecting the supply of sandeel larvae (Joint Nature Conservation Committee [JNCC] 

In the second 
sentence of the 
paragraph “In 
2014, the Com-
mon,” do you 
mean “demersal 
species that are 
most valuable” or 
“most demersal 
species that are 
valuable”?
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2014a,b). These locations were chosen as they are thought to be important sources of newly hatched 
sandeel larvae (Wright & Bailey 1996), which, through dispersal, support sandeel stocks afar. It is 
possible that MPAs may lead to increased abundance outwith the MPA through larval ‘spillover’ 
(Christensen et al. 2009); however, the extent of effective spillover will obviously depend on avail-
ability of suitable habitat elsewhere.

Conclusions

The key findings from this review may be summarized as follows:

• Climate- driven trophic cascades are already affecting seabirds in waters around the 
British Isles.

• There appears to be marked interspecies variation in sensitivity to climate change.
• Strong regional differences exist in climate effects on seabirds, possibly due to spatial 

variation in prey affecting the strength of bottom- up effects.
• Higher winter temperature appears to be having a negative impact on sandeel populations 

in the north- western North Sea. These populations are characterized by low growth rates, 
so metabolic costs of overwintering should increase with rising temperatures.

• A reduction in mean copepod size may explain a long term decline in sandeel size- at- date. 
This ongoing reduction in sandeel size- at- date is causing a mismatch between seabird peak 
energy requirements and adequate sandeel prey.

• The copepod Calanus finmarchicus is a key prey species of sandeel, so further deleterious 
impacts on sandeels should be expected in the future in response to the ongoing north-
wards shift of this Calanus species. This will have the effect of a reduction in seabird 
breeding success.

• There is no evidence of indirect climate impacts on zooplankton through changes in phyto-
plankton. Therefore, any indirect climate impacts on seabirds may be restricted to changes 
in fish prey or zooplankton.

• Future patterns of sandeel- dependent seabird breeding success and survival will depend 
critically on the scope for feeding on alternative prey.

• An increase in sprat abundance should temporarily mitigate the impact of a shortage of 
sandeels for some seabirds. However, modelling indicates that they may not represent a 
long- term solution.

• Declines in sandeel quality and abundance could cause the North Sea seabird community 
to become increasingly dominated by larger species.
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