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Summary. We consider prediction and uncertainty analysis for systems which are approxi-
mated using complex mathematical models. Such models, implemented as computer codes,
are often generic in the sense that by suitable choice of some of the model’s input parameters
the code can be used to predict behaviour of the system in a variety of specific applications.
However, in any specific application the values of necessary parameters may be unknown. In
this case, physical observations of the system in the specific context are used to learn about
the unknown parameters. The process of fitting the model to the observed data by adjusting
the parameters is known as calibration. Calibration is typically effected by ad hoc fitting, and
after calibration the model is used, with the fitted input values, to predict future behaviour of
the system. We present a Bayesian calibration technique which improves on this traditional
approach in two respects. First, the predictions allow for all sources of uncertainty, including
the remaining uncertainty over the fitted parameters. Second, they attempt to correct for any
inadequacy of the model which is revealed by discrepancy between the observed data and the
model predictions from even the best-fitting parameter values.

The method is illustrated using data from a nuclear radiation release at Tomsk, and from a
more complex simulated nuclear accident exercise.
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1. OVERVIEW

1.1. Computer models and calibration

Various sciences use mathematical models to describe processes that would otherwise be
very difficult to analyse, and these models are typically implemented in computer codes.
Often, the mathematical model is highly complex, and the resulting computer code is large
and may be expensive in terms of the computer time required for a single run. Nevertheless,
running the computer model will be much cheaper than making direct observations of the
process. Sacks, Welch, Mitchell and Wynn (1989) give a number of examples. The codes we
consider are deterministic: that is, running the code with the same inputs always produces
the same output.

Computer models are generally designed to be applicable to a wide range of particular
contexts. However, in order to use a model to make predictions in a specific context it may
be necessary first to calibrate the model using some observed data. To illustrate this process
we introduce a simple example. Two more examples are described in detail in Section 2.2.

In order to decide on a dose regime (e.g. size, frequency and release rates of tablets) for a
new drug, a pharmacokinetic model is used. This models the movement of the drug through
various ‘compartments’ of the patient’s body and its eventual elimination (e.g. by chemical
reactions or excretion). Such a model allows the consequences of any given dose regime to
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be explored. However, in order to use the the model for a particular drug it is necessary to
specify rates with which it moves between different body compartments, such as the rate of
transfer from stomach to blood, or of elimination from the liver. Some or all of these rates
will be specific to the drug in question. and it is through requiring the user to specify them
as inputs to the code that the model achieves applicability to a wide range of drugs. These
rates will, of course, not be known for a given drug, and so experiments are performed to
obtain observational data. It is not possible to obtain the rates themselves. Instead, the
data are observations of certain outputs of the pharmacokinetic model, e.g. concentration
in blood or urine at certain time points. Crudely put, calibration is the activity of adjusting
the unknown rate parameters until the outputs of the model fit the observed data.

More generally, a computer model will have a number of context-specific inputs that
define a particular situation in which the model is to be used. When, as is often the case,
the values of one or more of the context-specific inputs are unknown, observations are used
to learn about them. This is calibration.

In current practice, calibration invariably consists of searching for a set of values of the
unknown inputs such that the observed data fit as closely as possible, in some sense, to
the corresponding outputs of the model. These values are considered as estimates of the
context-specific inputs, and the model is then used to predict behaviour of the process in
this context by setting these inputs to their estimates.

Clearly, this ‘plug-in’ prediction treats the context-specific inputs as if they were known.
The reality is that they are only estimated, and residual uncertainty about these inputs
should be recognised in subsequent predictions from the model.

We present in this paper a Bayesian approach to the calibration of computer models. We
represent the unknown inputs as a parameter vector 8. Using the observed data we derive
the posterior distribution of @, which in particular quantifies the ‘residual uncertainty’ about
0. This uncertainty is fully accounted for when using the computer model subsequently for
prediction, by obtaining a predictive distribution. The principles of Bayesian predictive
inference are set out in Aitchison and Dunsmore (1975), but the problem of computer code
calibration has a number of complicating features.

Our approach treats the computer code as simply a ‘black box’. We make no use of
information about the mathematical model implemented by the code, except insofar as this
may be represented through the prior information about the relationship between inputs
and outputs. Clearly, methods that open up the ‘black box’ and exploit its structure might
prove to be more powerful than our approach, but would be correspondingly more complex
to apply. This is a potentially important topic for future research.

1.2. Outline of this paper
Section 2 provides a detailed analysis of issues associated with computer codes. In partic-
ular, there are several other sources of uncertainty in the use of computer codes besides
uncertainty about context-specific inputs, and calibration for the purpose of prediction is
just one of a number of topics in the statistical analysis of computer code outputs. Section
2 begins with a careful study of uncertainties in computer models, illustrating the possible
sources with some detailed examples. It ends with a review of previous work on calibration
and related problems.

Our Bayesian method is built on a general Bayesian approach to inference about un-
known functions. A review of the relevant theory and published work is given in Section 3.
Our basic model and analysis is presented in Section 4, and practical application issues are
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addressed in Section 5. Section 6 presents a case study based on real data. Section 7 offers
some conclusions and directions for further work.

2. STATISTICAL ANALYSIS OF COMPUTER CODE OUTPUTS

2.1. Uncertainties in computer models

The widespread application of computer models is accompanied by a widespread concern
about quantifying the uncertainties prevailing in their use. The following is one way of
classifying the various sources of uncertainty.

e Parameter uncertainty. We have already discussed the matter of uncertainty about
the values of some of the computer code inputs. We can think of those inputs as
unknown parameters of the model. Generally, they specify features of a particular
application context, but they may also be more global parameters, assumed to have
a common value over a range of contexts or even in all contexts.

e Model inadequacy. No model is perfect. Even if there is no parameter uncertainty,
so that we know the true values of all the inputs required to make a particular predic-
tion of the process being modelled, the predicted value will not equal the true value of
the process. The discrepancy is model inadequacy. Since the real process may itself
exhibit random variability, we define model inadequacy to be the difference between
the true mean value of the real-world process and the code output at the true values
of the inputs. Note that this definition is not precise until we understand what are
meant by true values of inputs and the true value of the process. Given that there
is model inadequacy, we cannot think of the true input values as those which lead to
perfect predictions being output, so how can we define true values for the uncertain
input parameters? This issue is discussed in Section 4.3.

e Residual variability. The model is supposed to predict the value of some real
process under conditions specified by the inputs. In practice, the process may not
always take the same value if those conditions are repeated. We call this variation of
the process even when the conditions are fully specified, residual variability. There
are really two sources of uncertainty combined in one here. The process itself may be
inherently unpredictable and stochastic, but it may also be that this variation would
be eliminated (or at least reduced) if only we were able to recognise and to specify
within the model some more conditions. The latter is effectively another form of
model inadequacy, where the model lacks detail to discriminate between conditions
which actually lead to different process values. However, we define the true process
value to be a mean value averaged over these unrecognised conditions, as well as with
respect to intrinsic random variation; model inadequacy has been defined relative to
this true mean value of the process. The variability due to unrecognised conditions is
deemed to be part of residual variability.

e Parametric variability. It is often desired to use the model to predict the process
when some of the conditions specified in the inputs are uncontrolled and unspecified.
In a sense, this is the opposite of the problem of the model inputs being insufficiently
detailed, which contributes to residual variability. Here, the inputs require more
detail than we desire (or are able) to use. By leaving some of the input parameters
unspecified, and allowing them to vary according to an appropriate joint distribution,
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the predicted process value acquires an extra uncertainty that we will call parametric
variability.

e Observation error. In tackling the calibration problem, we will be making use of
actual observations of the process. We should allow for the possibility of observation
error. This adds further uncertainty over and above residual variation, although in
practice it may not be feasible to separate them (see Section 4.2).

e Code uncertainty. The output of the computer code given any particular configu-
ration of inputs is in practice not known until we actually run it with those inputs. In
principle, we could say that it is not really unknown because the output is a known
function of the inputs. After all, there is a mathematical model which, at least im-
plicitly, defines that function. Nevertheless, in practice the relationship is so complex
that it needed to be implemented in a computer code (which may even take hours to
run), and it is not realistic to say that the output is known for given inputs before
we actually run the code and see that output. It may not be practical to run the
code to actually observe the output for every input configuration of interest, in which
case uncertainty about code output needs to be acknowledged. Examples are given in
Section 2.2.

2.2. Examples

It is helpful to be able to relate the various concepts, definitions and notation in this paper
to some concrete examples of real computer codes. The following are just two of many
examples that could be given.

Gaussian plume model. In the field of radiological protection, a simple Gaussian
plume model (Clarke, 1979) is used to predict the dispersion and subsequent deposition of
radioactive material following an accidental release. Under these circumstances the detailed
input information required to run more complex models is not available.

The code inputs can be divided into those defining the atmospheric conditions at the
time of the accident (wind direction, wind speed, atmospheric stability) and those defining
the nature of the release (source term, source location, release height, release duration,
deposition velocity).

The dispersion of radionuclides is a highly complex process involving various chemical
and environmental processes which are not directly observable. Many simplifying assump-
tions are made in the Gaussian plume model, typically resulting in a high degree of model
inadequacy. For example, the speed and direction of the wind are assumed to remain
constant during the travel time of the released particles.

Even for this simplified model many of the inputs have parameter uncertainty associated
with them. The source term, which represents the amount of material released, and the
deposition velocity, which is the rate at which material in the air at ground level is deposited
on the ground, are examples. The appropriate value for the deposition velocity is very
difficult to determine (see Jones, 1981). Default values are often used based on the size
of the particles and the type of terrain over which the material passes. The height and
duration of the release, and the wind speed and direction may also have associated parameter
uncertainty.

The Gaussian plume model is cheap. We can make many thousands of runs within a
very short space of time, so for practical purposes code uncertainty is not an issue and we
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can treat the function as known. This is not true of more complex atmospheric dispersion
models.

During the course of an actual release, measurements of deposition are made by different
organisations using a variety of devices. The process of making these measurements is
not straightforward. Typically a sample of grass is taken from a site and analysed in a
laboratory. Measurement error is introduced at each stage of the measurement process.

The above discussion relates to the use of the plume model in a specific accident scenario
where parameter uncertainty represents beliefs about true values of the input parameters
for an actual release. We may also want to consider a risk assessment context, where we
want to predict possible contamination in the future. An accident could occur at any time,
and therefore the source term, wind speed and wind direction are random, and the inputs
are subject to parametric variability.

Hydrological model: Hydrological models are used to predict groundwater flow, for
example to predict the movement of contaminants in the soil or the level of discharge from a
stream after rainfall. We consider the model described in Romanowicz et al. (1994), which
predicts stream discharge. Inputs to the model include a time series of measured rainfall
data, the rate of evapotranspiration, average effective transmissivity of the soil Ty when
the profile is just saturated, and a constant m which is related to the level of subsurface
drainage.

Parameter uncertainty about Ty and m follows from the fact that the model is used to
predict water flows through complex geological structures which are not directly observable.
The measured rainfall data will include random measurement error, which is an example of
parametric variability. Model inadequacy arises from the simplifications introduced by the
modelling process, as with the Gaussian plume model.

Romanowicz et al. (1994) use measurements of actual stream discharge to learn about
the values of m and Ty. However, as they point out it is not possible to measure the true
value of the flow process, since we can only make point measurements of the heterogeneous
pattern of flow. This relates to the idea of residual variability described in Section 2.1, and
we would define the ‘true flow’ to be an averaged value.

2.3. Statistical methods and previous work

Some of the early work in the field of statistical analysis of computer code outputs was pri-
marily concerned with interpolation. That is, given data comprising outputs at a sample of
input configurations, the problem is to estimate the output at some other input configura-
tion for which the code has not yet been run. This is relevant when the code is particularly
large and expensive to run. An important review of this work is Sacks, Welch, Mitchell and
Wynn (1989), and some more recent references are Currin et al. (1991), Morris et al. (1993),
Bates et al. (1995) and Kennedy and O’Hagan (2000a).

The only form of uncertainty accounted for in this work is code uncertainty. Model
inadequacy, residual variation and observation error are not relevant because there is no
attempt to predict the real process as distinct from the computer model output, and ob-
servations of that process are not used. All input parameters are supposed known, and not
subject to parameter uncertainty or parametric variation. The statistical approach used in
this work is based on representing the computer code output as an unknown function of its
inputs, and modelling that function as a stochastic process.

Another problem that has been tackled by statistical methods for some time is that of
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uncertainty analysis. The objective of uncertainty analysis is to study the distribution of
the code output that is induced by probability distributions on inputs. The input parameter
distributions may be formulations of parameter uncertainty, i.e. parameters whose values
are unknown, or of parametric variability, i.e. parameters whose values are left unspecified.
The simplest approach to uncertainty analysis is a Monte Carlo solution in which config-
urations of inputs are drawn at random from their distribution. The code is then run for
each sample input configuration and the resulting set of outputs is a random sample from
the output distribution to be studied. See Helton (1993) for a review.

The Monte Carlo method for uncertainty analysis is simple but becomes impractical
when the code is costly to run, because of the large number of runs required. More efficiency
is claimed for Latin Hypercube sampling (McKay et al., 1979; Stein, 1987; Owen, 1992)
compared with simple Monte Carlo, see for example Crick et al. (1988) and Helton et
al. (1991). Aslett et al. (1998) combine a Monte Carlo approach to uncertainty analysis with
statistical interpolation of the code, effectively using the interpolator as a cheap surrogate
for the code.

Haylock and O’Hagan (1996) present a quite different Bayesian approach to uncertainty
analysis based on a Gaussian process prior model. They derive the posterior mean and
variance of the output distribution, and this is extended to posterior estimation of the
distribution function and the density function of the output distribution by Oakley and
O’Hagan (1998).

These methods of uncertainty analysis take account of parameter uncertainty and para-
metric variation in addition to code uncertainty. However, the objective is still focussed
on the code output, in this case in the form of the output distribution, rather than on the
process itself. There is therefore no treatment of model inadequacy, residual variation or
observation error.

Another problem associated with computer codes is sensitivity analysis, whose goal is
to characterise how the code output responds to changes in the inputs, with particular
reference to identifying inputs to which the output is relatively sensitive or insensitive. A
good source for the large literature on this subject is Saltelli et al. (2000). Whilst much of
this makes no use of statistical methods there are some notable exceptions. See for example
Helton (1993), Morris (1991), Iman and Conover (1980), Welch et al. (1992), Morris (1991),
Homma and Saltelli (1996), and O’Hagan et al. (1999). In Draper et al. (1999), sensitivity
analysis is applied across a range of ‘scenarios’, using the model averaging ideas of Draper
(1995). As with interpolation, these statistical approaches to sensitivity analysis only take
account of the source of uncertainty common to all statistical analysis of computer code
outputs, namely code uncertainty.

The final topic in our survey of this field is calibration. As discussed in Section 1.1, the
traditional way of estimating unknown parameters is by an ad hoc search for the best fitting
values. Some account is thereby taken of observation error, residual variation and model
inadequacy, but only implicitly through the measure of fit discrepancy. This measure is
not generally developed by modelling these error terms in any explicit way, and is usually
entirely heuristic. Also, since the estimated values are then treated as if they were known,
the subsequent predictions take no account of the (remaining) parameter uncertainty.

In contrast, the GLUE (Generalised Likelihood Uncertainty Estimation) method of Ro-
manowicz et al. (1994) does allow fully for parameter uncertainty. The approach is effec-
tively Bayesian. An initial Monte Carlo sample is drawn from what amounts to the prior
distribution of the unknown inputs, and is then weighted by a likelihood term. Predictions
are made using all the sampled input configurations, and the result is a weighted sample
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from the posterior predictive distribution. For instance, the weighted sample mean is an
estimate of the mean of this predictive distribution.

It would be possible within the GLUE method to allow for the code uncertainty arising
from having only a sample of runs, also to allow for parametric variation by extending
the Monte Carlo method to allow for draws from the unspecified inputs at the prediction
stage, but these are not done in the published literature to date. As in the more tradi-
tional calibration approach, the likelihood is rather heuristic and only very loosely based on
modelling the discrepancy between code outputs and the real process. Model inadequacy,
residual variation and observation errors are not distinguished or modelled explicitly. No
account is taken of them in prediction, the objective still being to estimate the code output
rather than reality.

Another Bayesian approach to calibration is given by Craig et al. (1996, 1999). They
employ modelling for the relationship between code inputs and output that is akin to the
Gaussian process model mentioned in connection with much other work in this field. In
Craig et al. (1996), the primary objective is to make the search for a best fit calibration
more efficient and systematic. Their modelling reflects the iterative nature of the search,
and their methods adopt the Bayes Linear philosophy of Goldstein (1986, 1988) and Wooff
(1992), as opposed to a fully specified Bayesian analysis. The approach is extended in Craig
et al. (1999) to treat the question of prediction following calibration.

Cox et al. (1992) describe a calibration method that is similar to the traditional search
for best fitting parameters, but which replaces an expensive code with the much cheaper
interpolator obtained using the Gaussian process model. Their method does not account
for remaining parameter uncertainty at the prediction stage. See also Cox et al. (1996).

An attempt to combine prior expert opinion on both the calibration parameters and
the model output is given by Raftery, Givens and Zeh (1995) using an approach they call
Bayesian synthesis. This was criticised by Wolpert (1995) and Schweder and Hjort (1996),
and in a follow-up paper, Poole and Raftery (1998) propose an alternative called Bayesian
melding. Neither method explicitly recognises model inadequacy and the underlying com-
puter code is supposed to be simple enough for code uncertainty to be ignored.

Our analysis in the present paper is the first attempt to model, and to take account
of explicitly, all the sources of uncertainty arising in the calibration and subsequent use of
computer models. We freely acknowledge that our method as currently implemented is not
fully Bayesian, because we estimate hyperparameters by (approximate) posterior modes.
To take full account of uncertainty in hyperparameters is another topic for further research,
but we believe that our present methodology is the fullest treatment to date of computer
code uncertainties, and argue that it may be adequate in practice.

3. BAYESIAN INFERENCE FOR FUNCTIONS

3.1. Gaussian processes
The use of Gaussian processes has been mentioned several times in Section 2.3. They are
being increasingly used in current statistical research, and will be employed in this paper to
model both the computer code output and model inadequacy. It is therefore appropriate to
review the key theoretical and practical issues, together with some discussion of alternative
models.

Let f(-) be a function mapping an input & € X into an output y = f(x) in R. The
input space X’ can be arbitrary, but is typically a subset of R? for some g, so that we can
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write z as a vector & = (1, 2,...,,). We constrain y to be a scalar, y € R, for simplicity
here and throughout this paper, but it is equally possible for y to be a vector in RY . We
regard f(-) as an unknown function, and in a Bayesian framework it therefore becomes a
random function. The Gaussian process is a flexible and convenient class of distributions
to represent prior knowledge about f(-). In a non-Bayesian framework, we might treat f(-)
as if it were drawn randomly from some population of functions, and postulate a Gaussian
process model for the distribution of functions in that population. This is indeed the implied
interpretation of the non-Bayesian work in Sacks, Welch, Mitchell and Wynn (1989), for
instance, although these authors are clearly also aware of the Bayesian interpretation. In
the present authors’ opinion, the Bayesian interpretation is far more natural, and will be
used throughout this paper.

Formally, f(-) has a Gaussian process distribution if for every n = 1,2,3,... the joint
distribution of f(x1),..., f(x,) is multivariate normal for all z1, ..., x, € X. In particular,
f(x) is normally distributed for all € X.

The distribution is characterised by its mean function m(-), where m(z) = E{f(z)},
and its covariance function c(-,-), where c(z,z') = cov{f(x), f(z')}. We use the notation
f() ~ N(m(),c(-,-)) to denote the assertion that f(-) has a Gaussian process distribution
with mean function m(-) and covariance function c(-,-).

The use of Gaussian processes to represent prior distributions (or frequentist models)
for unknown functions dates back at least to Kimeldorf and Wahba (1970) and O’Hagan
(1978). Both used the Gaussian process effectively to model a regression function in a
nonparametric way. Although O’Hagan (1978) gave a very general treatment of a Gaussian
process regression function, the full potential for Gaussian process models did not begin to
be exploited until much later.

As we have seen in Section 2.3, their use to represent deterministic computer codes was
described by Sacks, Welch, Mitchell and Wynn (1989), who reviewed work of this kind over a
period of several years. Independently, Diaconis (1988) and O’Hagan (1991, 1992) described
their application for arbitrary deterministic functions and for the traditional problems of
numerical analysis—interpolation, integration, optimisation. It is worth noting that the
numerical analysis literature also includes work on methods that are optimal for randomly
generated functions, including Gaussian processes. See Novak (1988), for example.

The Gaussian process also underlies, implicitly or explicitly, the methods of geostatistics,
also known as kriging. See Matheron (1963) for the classical non-Bayesian theory and
Omre (1987), Handcock and Stein (1993) for Bayesian versions in which the Gaussian
process appears explicitly as a prior distribution. In geostatistics, the X" space is geographic,
usually two-dimensional but occasionally three-dimensional. The function f(-) represents
some characteristic that might be measured at any point in some geographic region. A
major concern in geostatistics is estimation of the covariance function or, equivalently, the
semi-variogram. See in particular Stein (1999). Other examples of the use of Gaussian
processes to model unknown functions are reviewed in a recent paper by Neal (1999).

3.2. Modelling issues

The Gaussian process is used in practice for much the same reasons that normal distribu-
tions are used so ubiquitously in statistical theory and modelling. They are convenient,
flexible and often quite realistic. It is, of course, important that normality, and specif-
ically joint normality, is a reasonable representation of prior knowledge or beliefs about
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f(-). Transformation may be useful in this context, just as it is in other applications of
normal-theory models.

Given that a Gaussian process is a reasonable modelling choice, the mean and covari-
ance functions should then be specified to reflect detailed prior knowledge about f(-). For
instance, if stationarity was a feature of prior beliefs, so that the prior distribution of f(x)
is the same as that of f(x + d) for any d € X (and where the operation of addition on X
is defined), m(-) will be a constant and c¢(x, ') a function only of © — x'.

In general, m(-) may be any function on X but c(-,-) must have the property that for
every n = 1,2,... the variance-covariance matrix of f(x1), f(x2),..., f(x,) (comprising
elements c(z;,;)) is non-negative definite for all &1,..., 2, € X. Some conditions for a
covariance function to be non-negative in this sense are given in Cressie (1991).

A useful device is to model m(-) and ¢(-, -) hierarchically. In the case of m(-) we can use
the linear model structure

m(-) = h()"B, 1)
where h(-) = (h1(-),h2("),...,hp(-))T is a vector of p known functions over X and B =
(B1,B2,---,8p)T is a vector of p unknown coefficients which are given a prior distribution

at the next stage in the hierarchy. Thus h(-) describes a class of shapes and (1) expresses
a belief that f(-) may be approximated by a function in this class. For instance h(z) =
(1,z,...,2P~1)T defines m(-) to be a polynomial of degree p — 1 when z is a scalar.

As a prior distribution for 8, the multivariate normal distribution is a convenient choice.
For instance, it has the property that f(-) remains a Gaussian process marginally after
integrating out B. Of course, the prior distribution should be specified to reflect genuine
belief rather than convenience, but in practice prior information about hyperparameters
such as B will typically be weak. The conventional representation of weak prior information
through the improper uniform density p(3) o 1 is therefore often used.

Notice that we can separate the mean and covariance structures by writing

f(x) =m(z) + e(x) = h(z)"B + e(x) (2)

using (1), where e(x) is a zero mean Gaussian process, with covariance function c(-,-).
The modelling of ¢(-,-) is very important because it is through correlation between f(x)
and f(x') that we express a view that f(x) and f(x') should be similar if x and x' are
sufficiently close in X, and thereby express a belief in smoothness of f(-). In the following
sections we shall generally adopt a hierarchical model for ¢(-,-) with first stage

c(,) = o’r(x —a'), 3)

where r(-) is a correlation function having the property r(0) = 1. This formulation expresses
stationarity in prior information about e(-); we have a common (unknown) variance o and
correlation that only depends on @ — &’. The correlation function is further expressed in

terms of other unknown hyperparameters; for instance if © = (z1,...,z,) is a vector,
q
r(x — ') :exp{—ij(xj - z)*}. (4)
j=1

Then at the next stage we would express prior distributions for the variance o? and the
roughness parameters wi, ..., ws.

Of course (4) is just one possible formulation. A more general expression that has been
widely used replaces (z; — z';)2 by |z; — x|*, where a may have a specified value or be
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another hyperparameter. Even more generally, we can allow a different a; in each dimension.
Another generalisation of (4) would be to set r(d) = exp(—d’ Qd), where Q is an unknown
symmetric positive-definite matrix, which in (4) has the form Q = diag(ws,...,wq).

In geostatistics it is normal to invest considerable effort in estimating o’r(z — z'),
or equivalently o2{r(0) — r(z — z')}, which is there known as the semi-variogram. The
geostatistics literature contains proposals for a wide range of semi-variogram forms. See
for instance Cressie (1991), Handcock and Wallis (1994), Stein (1999), Chilés and Delfiner
(1999).

3.3. Other Bayesian nonparametric models
The Gaussian process is a flexible and popular form for prior information about functions.
It is of course possible to model an unknown function parametrically, asserting that it is
definitely a member of some parametric family, so that prior information is expressed as
a prior distribution for the parameters. An obvious example is representing a regression
function parametrically in a linear model. In contrast, Gaussian processes are nonpara-
metric because they do not constrain the function to be in a specific parametric family.
The hierarchical form may, however, be viewed via (2) as semi-parametric, combining a
parametric underlying mean (h(-)73) with a Gaussian process residual term (e(-)).

The literature of Bayesian nonparametric and semiparametric methods is growing rapidly.
In addition to work using Gaussian processes, already referred to, various other ways have
been proposed to express prior beliefs about functions. One alternative to Gaussian pro-
cesses for modelling general functions is to represent the function as a linear combination
of components of a set of basis functions. Smith and Kohn (1998) discuss this generally,
contrasting splines and other bases. In the same volume of Dey et al. (1998), Vidakovic
(1998) considers wavelet bases and Rios Insua and Miiller (1998) deal with neural networks,
which employ sigmoidal basis functions. We can note here two connections between Gaus-
sian processes and the basis function approach. First, Neal (1996) has shown that Gaussian
processes can be viewed as neural networks with an infinite number of hidden nodes. Sec-
ond, the posterior mean from a Gaussian process is a linear combination of the set of basis
functions c¢(z, x;) formed by the correlation functions centred at the observations.

Another approach to modelling general functions is given by Liu and Arjas (1998), who
model a growth curve by a piecewise linear process. All of these approaches may be applied
to other kinds of functions such as computer code outputs.

There is also a wide literature on more specialised models for unknown distributions,
see other papers in Dey et al. (1998) and the review of Walker et al. (1999). However, these
are not directly relevant to computer code outputs.

4. BAYESIAN CALIBRATION

4.1. Calibration and variable inputs

In the calibration problem we must distinguish between two groups of inputs to the computer
model. One group comprise the unknown context-specific inputs that we wish to learn
about; we refer to these as the calibration inputs. The calibration inputs are supposed to
take fixed but unknown values @ = (61, ..., 8,,) for all the observations that will be used for
calibration, and for all the instances of the true process that we wish to use the calibrated
model to predict. The other group comprises all the other model inputs whose values might
change when we use the calibrated model. These are referred to as the variable inputs. The
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variable inputs are assumed to have known values for each of the observations that will be
used for calibration. In any subsequent use of the model their values will either be known
or subject to parametric variability. For example in Section 2.2, variable inputs include the
(z,y) coordinates of the Gaussian plume model or rainfall levels in the hydrological model.

We denote the output of the computer model when the variable inputs are given values
z = (21,...,%, ) and when the calibration inputs are given values t = (t1,...,%,,) by
n(x,t). Notice that we distinguish between the unknown value @ of the unknown calibration
inputs, that corresponds to the particular real process for which we wish to calibrate the
model, from the (known) value ¢ that one sets as inputs when running the model. We never
observe output from the model without knowing all the inputs specifying that run. We
refer to O as the (vector of) calibration parameters.

We denote the true value of the real process when the variable inputs take values & by
¢(x). Notice that only the variable inputs are needed here. For the computer code we can
vary the calibration inputs but they are fixed for the real process.

The calibration data comprise the n observations z = (21,...,2,)7, where z; is an
observation of ((x;) for known variable inputs x;, but subject to error. In addition, we
have the outputs ¥ = (y1,...,y~)? from N runs of the computer code, where

y; = n(x;, t;)

and both the variable inputs z} and the calibration inputs ¢; are known for each run. The

full set of data available for the analysis is d* = (y7,27). Note that generally N will be
much larger than n, since even if the computer code is expensive or time-consuming to run
it will still be much cheaper than obtaining observations of the real process.

A further comment in connection with variable inputs is that we are treating the com-
puter code output for any given set of inputs as a scalar. In practice, computer codes
typically produce many outputs for a given run. It is not generally necessary, however,
to regard the output as being multivariate. The reason is that we can define one or more
variable inputs to index the outputs. For instance, a Gaussian plume model will typically
be implemented in a computer code that for a given run, outputs concentrations at every
point in a two dimensional grid. Rather than thinking of this as a highly multivariate out-
put, we can define two variable inputs to index a given point on the grid. We can think
of the variable inputs as being augmented by these two new indexing inputs, and a run as
producing a single output at the specified point.

4.2. Model
We represent the relationship between the observations z;, the true process ((-) and the
computer model output 7(-,-) in the equation

zi = ((xi) + ei = pn(xi, 0) + 0(x;) + e, (5)

where e; is the observation error for the ith observation, p is an unknown regression pa-
rameter and §(-) is a model inadequacy function that is independent of the code output

Consider the observation error e; first. Strictly, this also includes any residual variation
as well as observation error (see Section 2.1). We do not imagine having replication of ob-
servations in circumstances where not only the variable inputs but also all the unrecognised
conditions were the same, so it is not possible to separate the two sources of uncertainty.
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We will suppose that the e;s are independently distributed as N (0, A). (The assumption of
normality may require a transformation of the raw data, as in our use of log-deposition in
Section 6.)

Now consider the implication of (5) that

() = pn(z,0) + (), (6)

with 7(-,-) and d(-) independent. This is, of course, merely one way of modelling the
relationship between the code output and reality. As a partial justification, it can be given
a formal derivation from a kind of Markov property, as follows. Assume that we know 8 and
can make as many runs of the code as we wish, to observe 7(z, 8) for various different x.
Suppose first that in order to predict {(2') at some specific point ' we would regard it as
sufficient to observe the output n(z’, @) of a single run at the same value ' of the variable
inputs. This is the Markov assumption, and can be shown to imply (6) (see O’Hagan,
1998), except that p may formally depend on . The further assumption that p is constant
seems natural and follows if we have stationary processes 71(-,-), 6(-) and {(-). Despite this
argument, we repeat that (6) is just one possible formulation; equally cogent arguments
could probably be evinced in favour of other models. In the examples that we have tried,
(6) does seem reasonable, but more experience is needed to explore this aspect of modelling.

The meaning of the true values @ of the calibration parameters is addressed in Section
4.3 below.

We represent prior information about both the unknown functions 7(-,-) and 6(-) by
Gaussian processes: 1(-) ~ N(mi(--),e1((), () and 3() ~ N(ma(),ea(-,-)). In
each case, we model the mean and variance functions hierarchically as in Section 3.2.
Adopting the linear model form (1) with weak prior distributions, we have m(x,t) =
hl(wat)Tﬂ1>m2(m) = hQ(w)Tﬂ27 and

p(By,B,) o 1. (7)

We write the combined vector as 8 = (87 ,8%)7. For the covariance functions we will not
specify any particular forms at present, but will suppose that they are expressed in terms
of some further hyperparameters that we denote by 1. We also denote (p, A, 1) collectively
by ¢. The complete set of parameters therefore comprises the calibration parameters @, the
location parameters @ and the hyperparameters ¢. It is reasonable to suppose that prior
information about 6 is independent of the others, and with (7) we suppose that the prior
distribution takes the form

p(0,8,¢) = p(0)p(d). (8)

4.3. True parameter values

We raised the question of the meaning of true parameter values in Section 2.1. We now
discuss this important topic in the context of our model (6) for the true process ¢(-), although
the main points are relevant to any discussion of the calibration of computer models.

Our statistical model is formulated through the equation (5), which can be viewed as
defining a non-linear regression model. (The analogy is far from perfect, but provides
some useful insight.) The computer code itself defines the regression function through the
term pn(x;, @), with parameters p and 6. The other two terms can be viewed as together
representing (non-independent) residuals.
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In this framework, we can see that the notion of a true value for 8 has the same meaning
and validity as the true values of regression parameters. The true 6 is a ‘best-fitting’ 8,
in the sense of representing the data zy,...,z, faithfully according to the error structure
specified for the residuals.

Now the developers of the computer model will generally have given concrete physical
meanings to the calibration inputs, but the true values of these physical quantities do not
necessarily equate to 6. This is inevitable in calibration when we do not believe that the
model can ever be a perfect fit. It may be that the physically true value of a calibration
parameter gives a worse fit, and less accurate future prediction, than another value. It is
dangerous to interpret the estimates of @ obtained by calibration as estimates of the true
physical values of those parameters.

In regression modelling, assuming one of the parameters known corresponds to fitting
a simpler, more limited class of regression functions. Fixing a parameter constrains the
form of the regression function, whereas adding more unknown parameters increases the
flexibility of the class of regression functions and allows a better fit to the data. By analogy,
we see that if we claim to know the value of one of the calibration parameters in 8, even if
this is genuinely the true physical value of that parameter, we restrict the form of the code
output and may have a worse fit to the data. The discrepancy will of course be taken up by
the model inadequacy function 4(-), but may also lead to the calibrated estimates of other
components of @ being further from their true physical interpretations. We will generally
have far fewer real observations with which to estimate d(-) than code outputs with which
to estimate 7(-, -), so it makes sense to make the code fit as well as possible.

So it may be reasonable to treat an input as unknown, and therefore part of the cali-
bration parameter 6, even if we believe its true physical value to be known. Particularly if
this is an influential parameter (as might be revealed by a sensitivity analysis), allowing it
to deviate from the true physical value may produce an empirically better computer model
of reality. Its prior distribution would be centered at the true physical value, reflecting an
expectation of the model’s accuracy, but with a non-zero variance.

All models are wrong, and to suppose that inputs should always be set to their ‘true’
values when these are ‘known’ is to invest the model with too much credibility in practice.
Treating a model more pragmatically, as having inputs that one can ‘tweak’ empirically,
can increase its value and predictive power.

4.4. Posterior distribution

In the remaining subsections of this section, we present the posterior analysis of the calibra-
tion problem and subsequent prediction of the true phenomenon using the calibrated code.
To save space, we give only an outline of the development here. For fuller mathematical
details the reader is referred to Kennedy and O’Hagan (2000Db).

The first step is to derive the posterior distribution of the parameters 8,3 and ¢. The
full data vector d is normally distributed given (0,3, ¢), and this will yield the likelihood
function. To express its mean vector and variance matrix we require some more notation.

We denote the set of points at which the code outputs y are available by D; =
{(z},t1),...,(x%,t~n)}. Similarly, we denote the set of points for the observations z of
the real process by Dy = {x1,...,2,}. Augmenting each of these points by the calibra-
tion parameters 6, we define D5(0) = {(x1,0),...,(xn,0)}. If we now let H;(D;) denote
the matrix with rows hy(z},%1)7, ..., hi(x%,tn)7T, the expectation of y is H1(D1)3;. In
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analogous notation, the expectation of z is pH1(D2(0))8; + H2(D>)8,. Hence

where
_ H,(D,) 0

H(6) = (pHI(DQ(O)) H2(D2)> '

To express the variance matrix of d, define V'1(D;) to be the matrix with (j,j') element
a((z],t;), (x],t;)), so that this is the variance matrix of y. Define V'1(D»(0)) and V2(D>)
similarly, and let C (D1, D2(@)) be the matrix with (j, i) element c1((z},¢;), (:,6)). Then

_ _ V1(Dy) C1(D1, D»(8))"
var(d | 0;ﬂa¢) — Vd(e) — (pCl(Dl,Dz(e)) )\In +22V1(D2(0)) + V2(D2)>

where I,, is the n x n identity matrix.
With prior distribution (8) we now obtain the full joint posterior distribution

p(8,8,9 | d) x p(B)p() f(d;ma(8), Va(8)), 9)

where f(;;mq(0),V;(0)) is the N(my(0),V;(0)) density function. Note that we have ex-
plicitly shown dependence on 8 but m4(0) also depends on 3 and p, while V 4(0) depends
on all of ¢.

4.5, Estimating hyperparameters

Since the exponent of (9) is quadratic in 3, we can integrate 8 out analytically to give
p(6,¢ | d). This, however, is an even more complex function of @ and ¢ than (9). A
fully Bayesian analysis would now integrate out the hyperparameters ¢ as well to leave
the posterior distribution p(6 | d) of the calibration parameters. However, p(0, ¢ | d)
is a highly intractable function of ¢. Even with the most parsimonious parametrisation
of ¢1((+,-),(-,-)) and c3(-,-), to integrate over ¢ numerically would entail at least a six
dimensional quadrature. Since much of the methodology that we develop herein may be
rather computationally intensive even conditional on fixed values of ¢, the full Bayesian
analysis will not typically be practical. It is important to note also that p(8, ¢ | d) will
generally be improper with respect to ¢ if p(¢) is improper. To adopt a fully Bayesian
analysis will therefore demand full and careful consideration of prior information regarding
the hyperparameters.

We propose instead to derive plausible estimates of the components of ¢ and then to
act as if these were fixed. Thus, for inference about 8 we will use its conditional posterior
given the estimated values of ¢p. We propose estimating the hyperparameters in two stages.
In the first stage we use just the code output data y to estimate the hyperparameters 1,
of ¢1((+,+), (+,+)). There is some information about %), in the observational data z, but (a)
z depends also on the other hyperparameters and (b) the number n of observations in z
will typically be very much smaller than the number N of output values in y. Therefore
very little is lost by this simplification. In the second stage we use z to estimate p, A and
the hyperparameters 1, of ¢2(-,-), having now fixed 1), .

Now we originally set out to model, and account for explicitly, all the sources of un-
certainty identified in Section 2.1. The compromise proposed here means that we do not
account fully for all these sources.
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e By fixing A at an estimated value, we do not account fully for observation error and
residual uncertainty.

e By fixing p and the hyperparameters 1, of ca2(-,-) at estimated values, we do not
account fully for model inadequacy.

e By fixing the hyperparameters ¥, of ¢1((,-),(:,-)) at estimated values, we do not
account fully for code uncertainty.

Nevertheless, we should stress that in each case it is only the ‘second order’ effect of
uncertainty about hyperparameters that is neglected, and we believe that our analysis
captures the major part of all these sources of uncertainty. We therefore claim that our
analysis does recognise all sources of uncertainty, and that it is more important to ensure
that all sources are covered to this extent than to account for any missing hyperparameter
uncertainty, at the cost of very much increased computation.

In geostatistics, it is generally recognised that kriging estimates are reasonably robust to
the form of the covariance function, and even to roughness parameters in that function, but
that the prediction variance will typically be very sensitive to roughness parameter values.
Furthermore, such parameters are notoriously difficult to estimate. We are conscious that
these considerations may give cause for concern about our treatment of hyperparameters
and the choice of covariance structure. In our defence, we show in the example in Section
6 that our predictive variances calibrate well with held-back data, and this has been our
experience with other examples, too. In Section 6.3 we present an investigation which shows
for those data that the effect of acknowledging uncertainty in roughness parameters is small.

4.6. Calibration, prediction and uncertainty analysis

Having estimated the hyperparameters ¢p we now condition on the estimates cf), so that we
regard the posterior distribution of the calibration parameters to be p(@ | ¢ = ¢,d) x
p(0,¢ | d). We can use this to make inference about 6, although its intractability means
that numerical methods must be used. We discuss appropriate techniques in Section 5.

In practice, we will not generally be interested in inference about @ as such. The purpose
of calibration is to use the calibrated model for predicting the real process. We can think
of calibration as a preliminary to addressing the other statistical problems of interpolation,
sensitivity analysis and uncertainty analysis, described in Section 2.3. Thus, the problem
of predicting the true process z(x) at some specified variable inputs x can be seen as
interpolating the function z(-).

The posterior distribution of z(-) conditional on the estimated hyperparameters ¢ and
the calibration parameters @ is a Gaussian process. Its mean function is given by

E(z(z) | 0,0,d) = h(z,0)"B(0) + t(z,0)TV4(0)~(d — H(0)5(8)), (10)
where
_ ( phi(,0)
h(z,0) = (phfzé’;) )
and

t(z,0) = pVi((z,8), D) ) )

(ﬂle((w, 0), D2(0)) + Vs (zx, D)
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Its covariance function is given by

COV(Z(.’B), z(ml) | 07 d): d) = p2C1(($, 0)7 (ml7 0)) +c2 (iE, "El)
—t(z,0)"Va(0)~'t(a',0)
+(h(z,0) — H(0)"V4(0) 't(x,0))" W(0)(h(z',0) — H(0)"V4(6) 't(z',0)),

where W (60) = (H(6)"V 4(6)"'H(8))~'. By combining this distribution with p(6 | ¢, d),
we can make inferences about z(x), again using numerical computation methods. For
instance to estimate z(z) we might use its posterior mean E(z(z) | ¢, d) (for the estimated
values of ¢), obtained by integrating E(z(x) | 0,¢,d)) with respect to p(0 | o, d).

Now suppose that we wish to predict the real process in the context where one or more of
the variable inputs is subject to parametric variability, as discussed in Section 2.1. Section
2.2 gives examples of computer codes for which inputs may be unspecified in this way.
The problem of uncertainty analysis is to study the (extra) uncertainty in model outputs
induced by this parametric variability. Although uncertainty analysis for computer codes
is typically formulated in this way, i.e. with concern for uncertainty in the code outputs, in
the present context the larger challenge is to study uncertainty in the real process z(-).

We therefore consider the random variable z(X), where the variable inputs X are now
random, having a distribution G x (). (In practice, only a subset of the variable inputs will
be subject to parametric variability, so G' x (-) will be degenerate in the other dimensions.)
The task of uncertainty analysis is now to make inference about the distribution of z(X).
In particular, we wish to make inference about properties of this distribution such as the
mean K = Ex{2(X)} = [, z2(x) dG x (x), the variance L = varx{2(X)} = K, — K>,
where K, = [, z(x)? dG x (), or the value at some point g of the distribution function
F(g9) = Px{2(X) < g} = fz($)<g dG x (). Inference about these or other summaries of
the distribution of z(X) may be derived from the posterior distribution of z(-). Details are
given in Kennedy and O’Hagan (2000b).

It is equally straightforward to work in terms of an uncertainty analysis of the code
output n(x, 8), with respect to either or both of parametric variability in  and parametric
uncertainty (after calibration) in 6.

We do not explicitly deal with sensitivity analysis in this paper: appropriate techniques
are outlined in O’Hagan et al. (1999).

5. IMPLEMENTATION DETAILS

5.1. Design issues

We now consider a number of practical issues arising in the implementation of the theory
in Section 4, beginning with the question of the choice of the sets of points at which the
code is run and at which observational data are observed. The set D, of values x; of the
variable inputs for the calibration data will often not be a matter of choice. In our example
in Section 6, for example, the available data are given to us. On the other hand, we will
generally be able to choose the code design D; of points (a:;‘-,tj). There is a considerable
literature on the design of computer experiments— see for example Sacks, Schiller and
Welch (1989), Morris et al. (1993), Morris and Mitchell (1995), Bates et al. (1996). All of
this relates to the simpler problem of designing sets of code input values for the purpose of
interpolating the code itself, or for uncertainty analysis of the code (Haylock, 1997). The
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problem of design for calibration is more complex and a topic for future research. We have
so far chosen designs on a more heuristic basis.

First, existing work suggests that it is important for the code design to give good coverage
of the region of (x,t) space of greatest interest. The variable input coordinates z; should
cover both the range of points x; in the calibration data and the range of values over
which we may wish to predict the process in future. The calibration input coordinates ¢;
should cover the range that is plausible for the true value @ of the calibration parameters.
The latter suggests a sequential design approach, beginning with values spanning the prior
distribution of @ then adding more points over the range covered by its posterior distribution.
For examples of this kind of sequential design approach see Bernardo et al. (1992), Craig et
al. (1996) and Aslett et al. (1998).

A second intuitive consideration is that there should be control values a:;“ in D; close to
the values x; in D5 in order to learn about the relationship between the code and reality.

For our example in Section 6, we have no choice over the calibration design Dy. We set
the code design D to be the cartesian product of Dy with a latin hypercube design for the
calibration inputs. For the latter, we have used a maximin latin hypercube as described in
Morris and Mitchell (1995). These designs give good coverage of the space and are evenly
distributed in each one-dimensional projection. The use of a Cartesian product has some
computational advantages which are briefly described in Kennedy and O’Hagan (2000b).

5.2. Modelling choices
In application of the theory, we need to specify hi(x,t), ha(x), c1((x,t),(z’,t")) and
co(x,x'). hi(x,t) should be chosen to reflect beliefs about the general shape of the func-
tion 7n(x,t), and ho(x) should be chosen to reflect beliefs about the shape of d(x). In the
latter case, particularly, we may not have any specific expectations to model through ha(-).
Generally, it does not help to put components into these functions that are not motivated
by actual prior knowledge. This is in contrast to parametric regression modelling, where
adding extra regressor variables will in general produce improved fit. The Gaussian process
is nonparametric and will adapt to whatever shape of function is suggested by the data, and
will often do so better if spurious regressors are not included. In applications, therefore,
unless there is prior information to suggest more complex modelling, we take h(x,t) = (1)
and ha(x) = (1) as defaults. This means that 3; and 3, are scalars and represent unknown
constant means for 7(-,-) and §(-).

For the covariance functions we again model parsimoniously. We generally adopt the
form (3), (4), so that

a((e,t), (', 1)) ot exp{~(2 — ') Qo ( — @') }exp{—(t — )T Q(t — ¢')}, (11)
er(@,2) = ojexp{—(z—2) Q(x -2")}, (12)

with diagonal forms for €;,Q, and .

It is important to recognise that these are not trivial modelling choices. The Gaussian
forms for the covariance function imply a belief in differentiability of both 7(-,-) and §(-),
and indeed imply a belief that these functions are analytic. This may be appropriate for
the computer code 7(-,-) but these assumptions for both 7(-,-) and §(-) imply the same
beliefs about the real world process ((-), which will often be inappropriate. We return to
this matter in Section 6.3.

Assuming diagonal forms for the roughness matrices implies that any elliptical anisotropy
in the covariances is oriented along the individual parameter axes. Transformation may be
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relevant to make this assumption more realistic, and is implemented in our examples as
described in Section 6. Another assumption in (11) is that there is separability between the
calibration and variable inputs in the covariance structure of the code 7(-,-). Separability
is frequently assumed in various statistical applications, particularly for modelling space-
time processes, for instance by Haslett and Raftery (1989) and Oehlert (1993). A result
in O’Hagan (1998) provides a characterisation of separability that may give a justification
in some contexts, but it is primarily assumed in practice for reasons of convenience and
parsimony.

Finally, we may remark that even the underlying assumption of stationarity may be
questioned, particularly in respect of the real process. A reasonably tractable nonstation-
ary alternative might be the localised regression model of O’Hagan (1978). Sampson and
Guttorp (1992) give a very general nonparametric technique, but it would be much more
difficult to fit this into our framework.

Our reasons for using these assumptions in our examples are briefly as follows. First,
(11) and (12) facilitate computation by allowing analytical results that would otherwise
need to be evaluated numerically (see Kennedy and O’Hagan, 2000b), greatly increasing
computation times. We employ (4) rather than the more general r(d) = exp(—d” Qd) for
reasons of parsimony. In general, hyperparameters are not well identified in these models.
Quite different values for ¢ may fit the data equally well, and produce comparable predic-
tions. The form (4) is sufficiently flexible to allow for some anisotropy in the correlation
structure, and indeed we adopt the isotropic form r(d) = exp(—wd’ d) wherever it seems
acceptable.

We freely admit, therefore, that we employ these assumptions essentially for convenience
and simplicity. However, we believe that to a large extent other assumptions could give very
similar results. Some tentative support for this view is given by some findings reported in
Section 6.3.

We also need to specify prior distributions p(8) and p(¢) for the calibration parame-
ters and hyperparameters respectively. We adopt a normal prior distribution for 6, after
transformation where appropriate, again for computational convenience. Prior information
about hyperparameters will often be weak, with the possible exception of A. It is use-
ful, however, to try to formulate some prior knowledge about roughness parameters like
w. A uniform prior distribution should generally not be used for such parameters because
our modal estimation method will often give unrealistically large estimates. Where prior
information is weak, the form p(w) oc w™? is preferable.

5.3. Computation

The main computational issues concern the need for numerical integration with respect to
the posterior distribution of @, and the fact that we need to invert the matrix V 4(6) for
each 0 value in that numerical integration.

If the code n(-,-) is complex and computer-intensive, we will expect the number N
of code evaluations available to be relatively small (and we expect n to be smaller still).
Then the inversion of the (N + n) x (N + n) matrix V 4(8) may not be a serious problem.
However, for a simpler code we may expect to be able to make larger numbers of runs
to obtain more information about 7(-,-). Then N is potentially very large. In this case
considerable computational savings are achieved by the code design D; having a Cartesian
product form. See Kennedy and O’Hagan (2000b) for details.

Another device that might be considered for computation with large correlation matrices
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Fig. 1. Tomsk aerial survey of 695 Rul06 deposition measurements, with contours at heights of 11
(solid line), 10 (— ——) and 9 (— - —).

is the local computation approach; Vecchia (1988). However, it is not clear how that idea
could be usefully applied in the more complex framework of calibration.

Turning now to the question of numerical integration with respect to 6, in our examples
we use the iterative Gauss-Hermite quadrature method of Naylor and Smith (1982). This
approach is realistic because the dimensionality of @ is relatively low, so that quadrature is
feasible, and because the code is relatively simple, so that we can afford to use Cartesian
product rules and iteration. With more expensive codes or in somewhat higher dimen-
sional @ space it becomes important to use more efficient quadrature designs (for references
see Evans and Schwartz, 1995). For high-dimensional 6, it may become necessary to use
simulation methods of integration: we have not explored this yet.

6. EXAMPLE: TOMSK DATA

6.1. Data and model
We now present an analysis of data from an accident at the Tomsk-7 chemical plant in 1993.

A detailed account of the accident is given in Shershakov et al. (1995). Measurements were
made for three radionuclides. However, for this example we only consider the deposition
of ruthenium 106 (Rul06). A total of 695 measurements of Rul06 deposition were made,
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at locations shown in Figure 1. The contour lines represent an interpolation of the log-
deposition at these points. These data were obtained from an aerial survey which started
close to the source and continued to approximately 40km downwind, in such a way that
consecutive measurements are very close.

For the prior approximation 7(-,-) we use the logarithm of the Gaussian plume model
described in Section 2.2, with a fixed level of background radiation added. The log trans-
formation is used to better approximate the assumptions of normality made in our model.
The critical unknown inputs for this model are the source term and deposition velocity.
We therefore treat the logarithms of these as the calibration parameters 8. z(x) represents
the true log-deposition for variable inputs 2. The variable inputs in this case comprise two
orthogonal linear functions of the northing and easting coordinates such that = (0, 0) rep-
resents the source point and a point @ = (z1,2) is distance 21 downwind from the source
and distance x5 from the plume centre line. The z;s are logarithms of observed depositions.

The pattern of deposition seen in Figure 1 has a well defined plume shape, and we would
expect the Gaussian plume code to provide a reasonably good approximation.

A normal distribution is used to approximate prior beliefs about #. The prior means
were obtained from the National Radiological Protection Board (NRPB). The variances
were set to 5 to represent vague prior knowledge, and prior covariances were assumed to be
0. These are realistic values for the variances, since the NRPB think the values could be a
couple of orders of magnitude from the prior estimates.

In this example we have treated the plume code as a known function, for given values of
the parameters, since it is practical to run the code for any input configuration of interest.
Although it is perfectly possible to follow through the more complex analysis with code
uncertainty, this simplification allowed us to perform some analyses to examine sensitivity
to model assumptions (See Section 6.3). Much of the theory of Section 4 simplifies as a
result. For example, the only correlation function to specify is ¢, (-,-). We first assume
the simple product form (4) with two roughness parameters (w1, w>), corresponding to the
directions parallel and perpendicular to the the plume axis, as the prevailing wind and the
crosswind are believed to affect the deposition differently.

From the original 695 measurements, a subset of size 10 was chosen to represent a small
sample of observed data similar to that which might be collected from ground measurements
shortly after an accident. The points were chosen reasonably close to the source, but to
avoid clustering were constrained so that each point is at least 5 measurement points from
every other selected point. Clustered points lead to redundant information, which would
make estimation of the model hyperparameters very difficult for such small datasets, and
the constraint ensures the data are relatively dispersed. Additional points were chosen
similarly and added to this subset, giving subsets of size 10, 15, 20 and 25 points. The
point furthest from the source was deliberately included in the 25 point dataset.

6.2. Results

Conditional on each of the datasets, posterior means and variances of z(x) were calculated
for all the 670 ‘unobserved’ points, and accuracy was assessed on the basis of the true values
at these points. The following strategies were compared:

e Strategy 1. Using a Gaussian process interpolation of the physical observations alone,
taking into account measurement error, but making no use of the Gaussian plume
model.
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e Strategy 2. Using Bayesian calibration and model inadequacy correction, as described
in Section 4.6.

e Strategy 3. Using the Gaussian plume model with ‘plug-in’ input parameters. The
physical data is not interpolated in any way. Instead, we select the input parameters
by minimising the sum of squared differences between the model and the data.

The data used for each strategy were the same, comprising from 10 to 25 of the original
data points. Table 1 gives the Root Mean Squared Errors (RMSE) of prediction for each
of these strategies. For comparison, RMSE=0.84 is obtained using the code with input
parameters fixed at their prior mean. Strategy 1 achieves little improvement over this value
for the data samples used. Strategy 3 is the kind of ‘best-fitting’ calibration technique often
used in practice. Given enough data points with which to calibrate the model, this method
improves on the use of the code with prior mean for 8, but Strategy 2 is even better, because
it also takes account of model inadequacy. Comparison of Strategies 1 and 3 shows that
when the number of observations is small, the use of the code (suitably calibrated) is more
accurate than simply interpolating the data.

RMSE n=10 n=15 n=20 n=25

Strategy 1 0.75 0.76 0.86  0.79
Strategy 2 0.42  0.41 0.37 0.36
Strategy 3 0.82 0.79 0.76  0.66

Table 1. Root Mean Squared Errors based on n observations

To assess the significance of the improvement here, we note that the observations are
log-depositions. So an error of 0.82 (Strategy 3, n = 10) corresponds to errors in predicting
deposition by a factor of exp(0.82) = 2.3, and reducing this to 0.42 (Strategy 2, n = 10) cuts
the error in predicting deposition to a factor of 1.5. This is a genuinely useful improvement
in the context of radiological protection.

The Quantile-Quantile plots in Figure 2 correspond to the standardised residuals based
on Strategies 1 and 2 in the case n = 25. The plot for Strategy 2 clearly shows a better
fit of the data to the predictive distribution than is achieved by Strategy 1. However, both
plots show heavy-tailed characteristics, and this feature is explored further in the following
section.

For larger datasets we would expect Strategies 1 and 2 to produce similar results. How-
ever, good prediction from interpolation of the data alone relies much more on an even
distribution of design points over the prediction region. In most applications, optimal de-
signs for physical observations are not practical. Our method makes greater use of the code
in regions where there are few physical data points and the uncertainty about model inad-
equacy in these regions is reflected in the posterior variance. Further evidence of predictive
improvements using Bayesian calibration and model inadequacy correction may be found
in a second example described in Kennedy and O’Hagan (2000b).

6.3. Sensitivity to modelling assumptions
So far, we have made various modelling choices, particularly in relation to the correlation
function, which will not be appropriate for all applications. We now briefly examine how
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Fig. 2. Quantile-Quantile plots for Strategies 1 and 2 with n = 25

some alternative plausible modelling assumptions affect inferences in the case of the 25-point
Tomsk data. Further details are given in Kennedy and O’Hagan (2000b).

The model described above (Strategy 2) will be referred to as M1. Three alternative
models are outlined below. In M2 we relax the assumption that the hyperparameters are
fixed, in M3 we use an alternative functional form for the correlation function, and in M4
we consider the isotropic form of the gaussian correlation function.

M2: Integration with respect to the roughness parameters. It was suggested in Section
4.5 that fixing hyperparameters at the posterior modal values, rather than treating them
as uncertain, is an acceptable simplification of the model. It is often the case in models of
this kind that inferences (especially posterior variances) are sensitive to the choice of the
roughness parameters in the correlation function. In an attempt to take more account of
the uncertainty about these parameters, we used a crude numerical method to integrate
over wi,ws in calculating the posterior predictive means and variances. These represent the
roughness parameters in our non-isotropic product of 1-dimensional correlation functions.

M3: Isotropic Matérn correlation. The exponential form of the correlation function
is appropriate if the inadequacy function is analytic, and therefore may not be the best
for modelling physical systems. We carried out an analysis identical to the one described

above but using the isotropic Matérn correlation function suggested by Handcock and Wallis
(1994).

MJ: Isotropic gaussian correlation function. The final model variation considered uses
the isotropic gaussian correlation function c(z,z') = exp(—b|x — z'|?). This is equivalent
to assuming that wi = wy in M1. The estimated values of these parameters under M1 differ
by a factor of 20. Under M4 we might therefore expect to see quite different inferences than
we obtained with M1 if there is sensitivity to these roughness parameters.
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These analyses suggest that (a) any improvement due to integrating with respect to
the hyperparameters, as opposed to maximising, is likely to be small, and (b) the effect of
using alternative covariance structures is also small. However, we do not propose that any of
these models fits perfectly. Plots of prediction errors suggest that the true deposition surface
exhibits local features that we are failing to predict. In some sense, all of the models have
predictive distributions with tails that are too thin. This is an area for ongoing investigation,
but is likely to be application-specific.

7. CONCLUSIONS AND FURTHER WORK

We have presented a Bayesian approach to calibrating a computer code using observations
from the real process, and subsequent prediction and uncertainty analysis of the process
which corrects for model inadequacy. The posterior summaries take account of all remaining
sources of uncertainty.

We have treated the code as a ‘black box’, and the methods described in this paper are
applicable to computer codes of arbitrary complexity.

As we have already mentioned in Section 5.1, important questions remain about the
choice of design points. The physical observation sites will often be limited, as in the
example presented here, but there will be situations in which these may be controlled. The
designs already used to learn about code uncertainty might be used for D, in order to
learn about model inadequacy. The problem of choosing designs D; and D> to give good
calibration of the model is more difficult. The Cartesian product designs for D; described
in Section 5 work well in the example of Section 6, in which the design D, is assumed to
be fixed. These designs also facilitate the computations as outlined in Section 5.3.

We have carried out integration with respect to 8 by simple quadrature, which is feasible
for low-dimensional @ but would become impractical with larger numbers of calibration
parameters. The obvious approach then is MCMC. However, the calibration distribution
p(@ | ¢,d) is a complicated function of 8, and it would appear to be difficult to simulate
from this distribution using MCMC methods. Nevertheless, in our examples we have found
it to be reasonably well approximated by a normal distribution (convergence of our iterative
quadrature relies on a normal approximation). If this is true for high dimensional @ it should
be possible to use an approximate MCMC integration method.

In our examples, we have not considered the more important case in which the code
output is multivariate. Effective calibration should ideally use all available code outputs
and corresponding physical measurements. For example, in the nuclear accident application
the NRPB would make a large number of air concentration measurements some time before
the first ground deposition measurements are available. The air measurements can provide
information about the unknown source terms, and therefore should be used in the analysis.
The use of multiple code outputs and measurements is a topic for future research. It was
suggested in Section 4.1 that multivariate outputs might be handled simply by creating
additional input parameters. In the nuclear application we could in principle treat “mea-
surement type” and “radionuclide” as inputs. However, for these types of input it would
not be reasonable to make the kind of assumptions we make about the correlation structure.

We have discussed quite extensively the question of alternative covariance structures.
Experiments reported in Section 6.3 indicated some degree of robustness, but also a need
to consider models that allow for more localised structure. We need to explore our methods
with more and varied applications.
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Within our Gaussian process framework, it would be relatively straightforward to ac-
commodate observations of derivatives of the code, as in O’Hagan (1992). Derivatives are
sometimes available, but we have not examined this so far. Other more speculative topics
for future research include opening up the ‘black box’, discussed in Section 1.1, and ap-
plications with high dimensional 8. Our examples hitherto have not gone beyond a few
dimensions, yet calibration problems may have many calibration parameters to ‘fit’. The
simulation-based approach of Romanowicz et al. (1994) can tackle high dimensional 6 but
does not allow for model inadequacy. We suspect that a preliminary dimension reduction
exercise, as in Craig et al. (1999), offers the most promising approach in such cases.
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