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1  |  INTRODUC TION

Ecosystem models are being increasingly used to support policy de-
cisions (Hyder et al., 2015; Nielsen et al., 2018). Often, there are 
several such models available, each providing different outputs with 
potentially different implications for management actions. While 

some models are better at capturing some aspects of the ecosys-
tem than others, in general no model is uniformly better than the 
others (Chandler, 2013; Nilsen et al., 2022), and often the average 
of models outperforms all of the models individually (Rougier, 2016). 
Management decisions on the basis of a single model are there-
fore sensitive to the choice of model (Collie et al., 2016; Essington 
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Abstract
1. Often there are several complex ecosystem models available to address a specific 

question. However, structural differences, systematic discrepancies and uncer-
tainties mean that they typically produce different outputs. Rather than selecting 
a single ‘best’ model, it is desirable to combine them to give a coherent answer to 
the question at hand.

2. Many methods of combining ecosystem models assume that one of the models is 
exactly correct, which is unlikely to be the case. Furthermore, models may not be 
fitted to the same data, have the same outputs, nor be run for the same time pe-
riod, making many common methods difficult to implement. In this paper, we use 
a statistical model to describe the relationship between the ecosystem models, 
prior beliefs and observations to make coherent predictions of the true state of 
the ecosystem with robust quantification of uncertainty.

3. We introduce EcoEnsemble, an R package that takes advantage of the statistical 
model's structure to efficiently fit the ensemble model, either sampling from the 
posterior distribution or maximising the posterior density.

4. We demonstrate EcoEnsemble by investigating what would happen to four fish 
species in the North Sea under future management scenarios. Although devel-
oped for applications in ecology, EcoEnsemble can be used to combine any group 
of mechanistic models, for example in climate modelling, epidemiology or biology.

K E Y W O R D S
Bayesian statistics, ecosystem management, ecosystem models, ensemble modelling, R, 
uncertainty analysis

www.wileyonlinelibrary.com/journal/mee3
mailto:
https://orcid.org/0000-0002-3445-7979
https://orcid.org/0000-0002-1913-5592
https://orcid.org/0000-0003-0284-0129
http://creativecommons.org/licenses/by/4.0/
mailto:michael.spence@cefas.gov.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.14148&domain=pdf&date_stamp=2023-06-28


2012  |   Methods in Ecology and Evoluon SPENCE et al.

& Plagányi, 2013; Fulton et al., 2003; Gaichas, 2008; Hart & 
Fay, 2020). Furthermore, by ignoring other available models, the 
amount of information utilised is limited, leading to an increase in 
uncertainty (Spence et al., 2018), often to a greater extent than for-
mally recognised.

Instead of choosing one model, it is possible to combine them using 
an ensemble model. However, many such methods, such as weight-
ing schemes (e.g. Bayesian model averaging, Banner & Higgs, 2017; 
Dormann et al., 2018), explicitly assume that one of the models cor-
rectly describe the truth (Chandler, 2013). Not only is this a strong as-
sumption, but treating a suite of models as containing the true model 
tends to underestimate the uncertainty because alternative, possibly as 
yet undeveloped, models could give predictions outside of the current 
range (Chandler, 2013). Under this scheme, adding a new model to the 
suite could increase the uncertainty of the ensemble despite the addi-
tional information contained in the new model (Dormann et al., 2018).

Applying the above methods to complex ecosystem models 
is not straightforward. Often these models are fitted to dif-
ferent data (Ianelli et al., 2016), describe different processes 
and produce outputs that are not directly comparable (Spence 
et al., 2018). At the same time, complex ecosystem models often 
share many similarities. They can have similar or even identical 
processes and forcing inputs (e.g. Tittensor et al., 2018), or can be 
fitted using similar data, suggesting that the discrepancies in the 
models are not independent (Christiansen, 2021; Knutti, 2010; 
Rougier et al., 2013).

Spence et al. (2018) developed an ensemble model adopting a 
Bayesian approach that treats the individual models as exchangeable 
and drawn from a population of possible models. They separated the 
discrepancy between the models and the true variables of interest 
(VoI) into discrepancy shared between all of the models and discrep-
ancies that are specific to each model.

By modelling in this way, the ensemble model exploits the 
strengths whilst discounting the weaknesses of each individual 
simulator (Chandler, 2013) while rigorously quantifying the uncer-
tainty allowing for better management decisions (Spence, Griffiths, 
et al., 2021).

In this paper, we introduce EcoEnsemble, an R package that im-
plements the ensemble model of Spence et al. (2018) for time- series 
outputs of complex models, where the models output linear com-
binations of the VoI. We introduce EcoEnsemble and the ensemble 
model in Section 2 and then demonstrate it on case study of fishing 
in the North Sea in Section 3.

2  |  USING ECOENSEMBLE

EcoEnsemble is an R package for fitting and sampling from the en-
semble model described in Spence et al. (2018). It is available on 
CRAN (https://cran.r- proje ct.org/web/packa ges/EcoEn sembl e/
index.html) and GitHub (https://github.com/Cefas RepRe s/EcoEn 
semble). To avoid confusion, we henceforth refer to complex eco-
system models as ‘simulators’.

2.1  |  Ensemble model overview

We are interested in the value of d VoI, y(t) =
(
y
(t)

1
, … , y

(t)

d

)�

 for 
t = 1, … , T. In the absence of any other information, the VoI evolves 
according to a random walk,

We have m simulators that describe the VoI. Not all of the simulators 
output all of the VoI over the full time period. To accommodate these 
differences, Spence et al. (2018) introduced a latent variable, known 
as the ‘best guess’, x(t)

k
, which represents simulator k's output if it de-

scribed all d VoI at time t with no parameter uncertainty.
For each simulator, the ‘best guess’ is the VoI plus a discrepancy 

term � (t)
k

 (Kennedy & O'Hagan, 2001),

The discrepancy term is split between discrepancies that are shared by 
all of the simulators and discrepancies that are specific to the kth sim-
ulator. The shared discrepancy is split between the long- term shared 
discrepancy, �, and the short- term shared discrepancy, �(t). Simulator 
k's individual discrepancy is spilt between and long- term individual dis-
crepancy, �k, and short- term individual discrepancy, z(t)

k
, that is

The long- term individual discrepancies are normally distributed so that 
the long- term individual discrepancy of the kth simulator is

The short- term discrepancy terms, �(t) and z(t)
k

, follow stationary auto- 
regressive models of order one, with autoregressive parameters R� and 
Rk, and covariance parameters Λ� and Λk, respectively.

A summary of the ensemble model is found in Table 1. For more 
details on the model, see Spence et al. (2018) or the ‘EcoEnsemble’ 
vignette in EcoEnsemble.

2.2  |  Data requirements

In EcoEnsemble, the user requires:

• observations of the VoI (ŷ(t)) and a covariance matrix describing 
observational uncertainty (Σy).

• outputs from each of the simulators (x̂(t)
k

) and covariance matrices 
describing the parameter uncertainty of each simulator (Σk).

• prior beliefs about the discrepancy terms.

2.2.1  |  Observations

Observations of the VoI at some times are included as an input. The 
ensemble model says noisy observations of the VoI are

(1)y(t) ∼ N
(
y(t−1),Λy

)
.

(2)x
(t)

k
= y(t) + �

(t)

k
.

(3)�
(t)

k
= � + �(t) + �k + z

(t)

k
.

(4)�k ∼ N
(
0,C�

)
.
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whenever there are observations at time t.
The observations could be direct, noisy observations of the 

VoI, with some measure of uncertainty (e.g. survey data; Spence 
et al., 2018), or outputs from a statistical model that estimates the 
VoI (e.g. a state- space model, Auger- Méthé et al., 2021), with uncer-
tainty (e.g. Spence et al., 2022; Spence, Griffiths, et al., 2021).

2.2.2  |  Simulator outputs

Simulators should output linear combinations of the VoI. They do 
not need to produce outputs for the whole period, but a given simu-
lator should output the same variables for each time that it does. The 
simulator outputs are noisy linear combinations of the ‘best guess’. If 
the kth simulator is evaluated at time t, its output is

where Σk reflects the parameter uncertainty of the kth simulator and 
Mk is an nk × d matrix relating the ‘best guess’ to the simulator output. If, 
for all simulators, VoI are either present or not, then the fit_ensemble_
model() function infers Mk for k = 1, … ,m. If other transformations of 
the VoI are outputted from the simulators, then the Mk matrices should 
be specified by the user.

Parameter uncertainty for simulator outputs should also be 
quantified in the covariance matrices Σk. This can be calculated, for 
example, by calibrating the simulator to empirical data (e.g. Spence, 
Thorpe, et al., 2021), or by projecting a distribution of elicited pa-
rameter values (e.g. Ducharme- Barth & Vincent, 2022; Thorpe 
et al., 2015).

2.2.3  |  Prior beliefs

To include prior beliefs in EcoEnsemble, the user should place pri-
ors on m + 3 different covariance matrices: the covariance of the 
random walk of the VoI Σy; the covariance of the auto- regressive 
process on the shared short- term discrepancy, Λ�; the covariance 
of the long- term individual discrepancies, C�; and the covariances of 
the auto- regressive processes on the individual short- term discrep-
ancies, Λ1, … ,Λm. The prior on the long- term shared discrepancy, � , 
also needs to be specified.

For Σy, the only choice for prior distribution is an inverse- Wishart 
distribution.

In EcoEnsemble, we follow the approach of Spence et al. (2018) 
and decompose each of the discrepancy covariance matrices 
C ∈

{
Λ� ,Λ1, … ,Λm,C�

}
, in the form

where Π = diag
(
�1, … ,�d

)
 is a diagonal matrix of standard deviations, 

and P is a correlation matrix.
In EcoEnsemble, for C� and Λ�, there are three available prior 

distributions for covariance matrices. In each case, the variance 
terms are parameterised by a gamma distribution, while the cor-
relation matrices can be parameterised either by an LKJ distribu-
tion (Lewandowski et al., 2009), an inverse- Wishart distribution, 
or by beta distributions, using the method of concordance 
(Gokhale & Press, 1982; Zondervan- Zwijnenburg et al., 2017). 
For Λk, for k = 1, … ,m, there is an additional option of a hierar-
chical prior.

The prior on the long- term shared discrepancy is parameterised 
by a zero- centred normal distribution,

so the user should specify the standard deviation ��. The user can also 
specify priors on the autoregressive parameters Rk for k = �, 1, … ,m,

In EcoEnsemble, priors are encoded by an EnsemblePrior object. For 
example:

priors <- EnsemblePrior(4,  
   ind_st_params = IndSTPrior("hierarchical",list(-3,1,8,4),  
     list(0.1,0.1,0.1,0.1),AR_params=c(2,2)),  
   ind_lt_params = IndLTPrior("lkj",list(1,1),1),  
   sha_st_params = ShaSTPrior("lkj",list(1,10),1,AR_params=c(2,2)),  
   sha_lt_params = 5)

Further details of the available priors are given in Section S1 of 
the Supporting Information. For more information on eliciting priors, 
see O'Hagan et al. (2006).

(5)ŷ
(t)

∼ N
(
y(t),Σy

)
,

(6)x̂
(t)

k
∼ N

(
Mkx

(t)

k
,Σk

)
,

(7)C = ΠPΠ,

(8)� ∼ N
(
0, �2

�
Id
)
,

(9)Rk + 1

2
∼ beta

(
�k , �k

)
.

TA B L E  1  A summary of the variables in the ensemble model. 
Values of nk and Mk are simulator specific.

Variable Dimensions Description Relationship

y(t) d Variables of interest y(t) ∼ N
(
y(t−1) ,Λy

)

ŷ
(t) d Noisy observation 

of y(t)
ŷ
(t)

∼ N
(
y(t) ,Σy

)

� d Long- term shared 
discrepancy

�(t) d Short- term shared 
discrepancy

�(t) ∼ N(R��
(t−1) ,Λ�)

�(t) d Simulator consensus �(t) = y(t) + � + �(t)

�k d Simulator k's long- 
term individual 
discrepancy

�k ∼ N
(
0,C�

)

z
(t)

k
d Simulator k's short- 

term individual 
discrepancy

z
(t)

k
∼ N

(
Rkz

(t−1)

k
,Λk

)

x
(t)

k
d Simulator k's best guess x

(t)

k
= �(t) + �k + z

(t)

k

x̂
(t)

k
nk The expectation of 

simulator k's output 
x
(t)

k

x̂
(t)

k
∼ N

(
Mkx

(t)

k
,Σk

)
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2.3  |  Fitting the model

The model described in Table 1 can be written as a dynamical linear 
model (see Supporting Information), meaning that the latent varia-
bles, �(t) =

(
y(t)

�

, �(t)
�

, z
(t)�

1
, … , z

(t)�

m

)�

 for all t, can be integrated out of 
the likelihood. EcoEnsemble uses the sequential Kalman filter (Chui 
& Chen, 2009; Kalman, 1960) to fit the ensemble model (see the 
Supporting Information for more details). The highest posterior den-
sity can be found or a full sample can be generated using the No U- 
turn Hamiltonian Monte Carlo (Hoffman & Gelman, 2011) in the 
package rstan (Stan Development Team, 2020).

The model is fit using the fit_ensemble_model() function, which 
creates an EnsembleFit object containing samples from Markov 
Chain Monte Carlo or point estimates of all of the parameters. For 
example:

fit <- fit_ensemble_model(  
    observations = list(SSB_obs, Sigma_obs),  
    simulators = list(list(SSB_ewe, Sigma_ewe, "EwE"),  
                                 list(SSB_lm, Sigma_lm, "LeMans"),  
                                list(SSB_miz, Sigma_miz, "mizer"),  
                                list(SSB_fs, Sigma_fs, "FishSUMS")),  
    priors = priors)

This code uses datasets included in EcoEnsemble. See Section 3 
for more details.

2.4  |  Model outputs

EcoEnsemble includes functionality for sampling �(t), as well as the 
most likely �(t), from an EnsembleFit object. For each set of param-
eters from a fitted model, we calculate the most likely latent vari-
ables and sample them using the algorithm developed by Strickland 
et al. (2009), based on Durbin and Koopman (2002).

generate_sample() creates an EnsembleSample object, which 
contains samples of �(t). Calling the plot() function with an 
EnsembleSample object plots the VoI, y(t), the simulators outputs, x̂(t)

k
,  

and the observations, ŷ(t), for all t and k (see Figure 2).

 samples <- generate_sample(fit)  
 plot(samples)

3  |  C A SE STUDY

We demonstrate EcoEnsemble using an example from fisheries. We 
investigated the change in spawning stock biomass (SSB) of four spe-
cies in the North Sea, Norway pout Trisopterus esmarkii, Atlantic her-
ring Clupea harengus, Atlantic cod Gadus morhua and common sole 
Solea solea if fished at maximum sustainable yield (MSY), a manage-
ment strategy that maximises the long- term yield for each species, 

from 2017 (Spence, Griffiths, et al., 2021). We used single- species 
stock assessments and four multispecies simulators to predict the 
SSB from 1984 to 2050 under this scenario. The data for this study 
are available in EcoEnsemble.

3.1  |  Observations

Noisy observations of the SSB were taken from single- species stock 
assessments (ICES, 2020a, 2020b). Uncertainty provided in stock as-
sessments formed the diagonal elements of Σy, with the off- diagonal 
elements being zero.

3.2  |  Simulators

SSB was also predicted using four simulators:

1. EcoPath with EcoSim (EwE) is a simulator with 60 functional 
groups for the North Sea (ICES, 2016). It outputs all four 
species from 1991 until 2050, meaning that n1 = 4 and M1 = I4 . 
The covariance of EwE's output was calculated in Mackinson 
et al. (2018).

2. LeMans is a discrete time length- based model that describes 
growth and predation (Thorpe et al., 2015). It outputs all four spe-
cies from 1986 until 2050, meaning that n2 = 4 and M2 = I4. Its 
covariance was calculated in Thorpe et al. (2015).

3. mizer is a size- based model that describes ontogenetic feeding 
and growth, mortality and reproduction driven by size- dependent 
predation and maturation processes (Blanchard et al., 2014). 
It outputs all four species from 1984 until 2050, meaning that 
n3 = 4 and M3 = I4, and its covariance was calculated in Spence et 
al. (2016).

4. FishSUMS is a discrete time length- based model that describes 
growth, density- dependent mortality and losses due to fishing 
and predation by explicitly modelled species, and seasonal repro-
duction (Speirs et al., 2016). It outputs Norway pout, Atlantic her-
ring and Atlantic cod, that is it does not output sole, from 1984 
until 2050, meaning that n4 = 3 and that

Its covariance was calculated in Spence et al. (2018).

3.3  |  Prior information

We used the default priors in EcoEnsemble to fit the model. See 
Supporting Information and Exploring priors for more information. The 
result of the prior predictive of the ensemble model is shown in Figure 1 
using the prior_ensemble_model() and sample_prior_mode() functions.

(10)M4 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎟⎠
.
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3.4  |  Results and discussion

The ensemble model prediction, simulator outputs and stock assess-
ment estimates are shown in Figure 2. The probability that the SSB 
of each species increases is given in Table 2.

The simulators appear to capture the general trend correctly 
for most species but often struggle to capture short- term dynam-
ics. For example, in the single- species model, low recruitment for 
Norway pout in 2003/2004 led to lower SSB in 2005 (ICES, 2020b), 
something that none of the simulators were able to capture. The en-
semble model is able to account for similar unexpected changes by 
having large uncertainty in predictions of the future. However, the 
overall trend is for Norway pout to remain at a similar level as before, 
as suggested by all of the simulators.

For Herring, all of the simulators predicted a decrease in the bio-
mass after 2017, and the ensemble model agreed. The ensemble model 
predicts a continued recovery of cod into the future under fishing at 
MSY (Table 2). EwE was able to capture the trends in the observed 
SSB and therefore contributes to the ensemble model predictions. For 
sole, none of the models predicted a large variation in the SSB, and so 
there was a large uncertainty in the ensemble model predictions.

This study was completed as a demonstration of the EcoEnsemble 
package. See Spence et al. (2020) or https://rconn ect.cefas.co.uk/
conte nt/22 for the results of a more extensive study.

4  |  CONCLUSIONS

Complex models are rapidly emerging as an invaluable tool for man-
aging natural resources (Hyder et al., 2015). However, when models 

F I G U R E  1  A plot of the natural logarithm of the prior predictive spawning- stock biomass of each species considered in the study, as 
predicted by each simulator, single- species assessments and the ensemble model. The edges of the shaded area represent the 5% and 95% 
quantiles of the prior predictive SSB.

TA B L E  2  The ensemble model probability that the spawning 
stock biomass for species in 2050 is larger than the year in the first 
column.

Year
Norway 
pout Herring Cod Sole

2000 0.158 0.378 0.983 0.726

2005 0.537 0.120 0.991 0.858

2010 0.156 0.177 0.975 0.873

2017 0.202 0.261 0.951 0.449
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produce different, and sometimes incomparable, outputs to one 
another, a single, clear interpretation for the purposes of decision- 
making can be difficult to find.

Spence et al. (2018) developed a statistical framework to 
combine outputs from multiple complex models by describ-
ing how these outputs relate to the VoI. EcoEnsemble is an R 
package that gives user- friendly way to configure priors, fit and 
sample from this ensemble model. We hope that this leads to 
an increase in the use of this model whenever multiple complex 
models are available.

While this framework was originally designed to answer ques-
tions in fisheries science, the tools presented here are general pur-
pose and can be used in other disciplines, such as climate science 
(Spence et al., 2022) and epidemiology.
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