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A B S T R A C T   

Natural mortality (M) is one of the most influential parameters in fisheries stock assessment and management. It 
relates directly to stock productivity and reference points used for fisheries management advice. Unfortunately, 
M is also very difficult to estimate, and hence very uncertain. Representing the uncertainty in M and how this 
influences estimates of management quantities is therefore an important component of conducting stock as
sessments. This paper outlines the range of methods available to estimate M for use in stock assessment. The 
methods include those based on maximum age, life history theory, relationships between “well-known” values 
for M (those found in the literature and based on data for the stock being assessed) and covariates, use of tagging 
data and catch curve analysis, and estimation within a single- or multi-species stock assessment model. All 
methods are likely subject to bias and imprecision due to incorrect assumptions and incomplete data. Further
more, M is generally assumed to be constant over time, age, and sex - assumptions that are unlikely to be true for 
any stock. Based on our review, there is an obvious benefit to directly estimating M using data and within a stock 
assessment while assigning a prior based on empirical methods. This approach effectively uses all the available 
information while also representing the uncertainty. Carefully examining diagnostics and checking for model 
misspecification is required to ensure that the available data and stock assessment model assumptions are 
appropriately informative about M when it is estimated during the model fitting process. For situations where 
direct estimation is not possible (a condition found in data-limited to data-rich stock assessments), the use of 
multiple methods with robust sensitivity exploration is recommended. Even when direct data are integrated into 
a stock assessment, we recommend using other methods to estimate M and analysing the direct data outside the 
stock assessment model as diagnostic tools.  

* Corresponding author at: Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Dr., La Jolla, CA 92037, USA. 
E-mail address: mmaunder@iattc.org (M.N. Maunder).  

Contents lists available at ScienceDirect 

Fisheries Research 

journal homepage: www.elsevier.com/locate/fishres 

https://doi.org/10.1016/j.fishres.2022.106489 
Received 22 December 2020; Received in revised form 29 August 2022; Accepted 1 September 2022   

mailto:mmaunder@iattc.org
www.sciencedirect.com/science/journal/01657836
https://www.elsevier.com/locate/fishres
https://doi.org/10.1016/j.fishres.2022.106489
https://doi.org/10.1016/j.fishres.2022.106489
https://doi.org/10.1016/j.fishres.2022.106489
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2022.106489&domain=pdf


Fisheries Research 257 (2023) 106489

2

1. Introduction 

Natural mortality (M) is a fundamental part of modelling structured 
(e.g., age, length, or stage) population dynamics. There are many ways 
to define natural mortality, ranging from annual survival rates to 
instantaneous rates. We define M as it is commonly used in fishery stock 
assessments as the instantaneous rate of natural mortality defined on an 
annual basis such that the survival over a year in the absence of fishing is 
exp[-M], and it acts continuously and simultaneously with fishing 
mortality, such that the survival over a year in the presence of fishing 
mortality is exp[-(M+F)]. Seasonal or other time-step models can lead to 
modifications of this general form. In general, M represents all mortality 
not attributed to the fishery (e.g., predation, starvation, disease, senes
cence) and may include some forms of human-induced mortality not due 
to fishing. In some cases, estimates of M may also account for unreported 
catch or movement of fish out of the assessed area. In applications, the 
definition of M may change depending on the stock assessment model 
used. 

The fact that M directly affects estimates of stock productivity and 
reference points makes it one of the most influential parameters in 
fisheries stock assessment and management. Management quantities (e. 
g., MSY, the maximum sustainable yield), and reference points (e.g., 
BMSY, the biomass corresponding to MSY, and FMSY, the fishing mortality 
rate corresponding to MSY) form the central basis of most successful 
management systems (Hilborn and Ovando, 2014). While M is central to 
these quantities, it is also very difficult to estimate (due to lack of 
informative and unbiased data, such as tagging data or age-composition 
in the absence of fishing, and confounding with other stock-assessment 
model parameters, such as catchability and selectivity (particularly 
when dome-shaped)) and the assumptions underlying its estimation (e. 
g., time invariance and constancy over age and sex) are likely to be 
violated. Hence both M and those reference points can be highly un
certain. Representing the uncertainty in M and how this influences es
timates of management quantities is therefore an important component 
of conducting stock assessments. Typically, estimates arise from ratio
nalized assumptions made by experts (often informed by information for 
other stocks or species), calculated from general empirical relationships, 
and/or are based on life history theory. M is also usually assumed to be 
constant over time, age, and (somewhat less often) sex to simplify model 
complexity— assumptions that are unlikely to be true for any stock. In 
some stock assessments, the value of M has been unchanged for decades 
at values based on little, if any, support from actual data. Many of these 
issues were identified by Vetter (1988) over three decades ago, and they 
have yet to be fully addressed. 

Several methods have been developed to estimate M outside the 
stock assessment model, including those based on mark-recapture data 
(e.g., Chapman, 1961; Seber, 1982), catch-at-age data (e.g., Chapman 
and Robson, 1960; Paloheimo, 1980), maximum observed age (Hamel 
and Cope, 2022; Hoenig, 1983; Then et al., 2015), life history theory 
(Roff, 1984; Charnov, 1993; Jensen, 1996; Alverson and Carney, 1975), 
and empirical relationships between M and covariates (Pauly, 1980; 
Gunderson, 1997; Hoenig, 1983). Each of these methods has its 
strengths and weaknesses, and accepted approaches for specifying 
values for M for use in stock assessments vary widely as summarized in a 
review by Brodziak et al. (2011). 

The information used in the methods to estimate M outside of a stock 
assessment (e.g., catch-at-age/length and tagging data) can be inte
grated within the stock assessment model (e.g., Methot and Wetzel, 
2013; Punt et al., 2000; Maunder and Punt, 2013); the process for 
achieving this is the focus of this review. Theoretically, if data provide 
reliable information about M using traditional direct methods (e.g., 
tagging or catch-curve analysis), the same data should also provide 
reliable information about M inside an assessment. However, there has 
been general pessimism regarding this approach (e.g., Deriso et al., 
1985; Gudmundsson, 1998) because estimates of M are often highly 
correlated with estimates of other model parameters (e.g., catchability, 

selectivity (particularly when dome-shaped), steepness, and the primary 
focus of the assessment – fishing mortality) (McDonald and Butler, 1982; 
Schnute and Richards, 1995; Clark, 1999; Wang, 1999; Fu and Quinn, 
2000) or there is no information about M in the data available for esti
mation purposes. However, some studies have shown that it is possible 
to estimate M within a stock assessment model (e.g., Fournier et al., 
1998; Maunder and Wong, 2011; Lee et al., 2011) if the assessment is 
suitably constrained to effectively behave like a multi-cohort catch 
curve analysis. Misspecification of complex assessment models can bias 
the estimates of M (Piner et al., 2011). 

This paper reviews the methods for estimating M for use in fishery 
stock assessments and highlights the strengths and weaknesses of each. 
Evaluating the alternative methods to estimate M is important for rec
ommending good practices. We consequently provide a summary of how 
well each method performs given what is known about them. We do not 
explicitly test the approaches, but rely on the information available in 
the literature. The evaluation is mostly qualitative, but we provide 
quantitative measures of performance when available. The true value of 
M, insofar as it exists, is unknown, so there is no direct test of estimation 
performance based on the results of actual assessments. 

Two main approaches have been used in the literature to evaluate the 
alternative methods (see Hoenig et al., 2016, for a discussion). These 
approaches are not necessarily applicable to all methods, making the 
comparison of the performance of the methods difficult. The first 
approach is to simulate the performance of estimators under known 
conditions where the true natural mortality rate or rates are known (e.g., 
Lee et al., 2011), although this approach depends on acceptable simu
lation specification and assumptions (Francis, 2012). The second 
approach is to evaluate which estimators predicted the values of M 
found in the literature (the reliability of these estimates of M is of course 
unknown) and use cross validation when the estimators are created 
based on the same values (e.g., Then et al., 2015; Hoenig et al., 2016). 

We first separate methods that estimate M independently from the 
stock assessment model (and may be used to construct an informative 
prior distribution for use in an assessment; Section 2) from those that 
estimate M within the assessment (Section 3). Following Hoenig et al. 
(2016), we then separate methods that estimate M independently of the 
stock assessment into those based on directly informative data (e.g., 
catch curve analysis and tagging analysis) and those based on indirect 
information such as theory and empirical relationships. Data used in the 
direct approaches can also be used within stock assessment models to 
provide information to estimate M, whereas “data” providing indirect 
information are better suited for developing Bayesian priors. 

2. Methods used to estimate M independently from a stock 
assessment 

The methods traditionally used to estimate M for input into stock 
assessments can be divided into four groups: 1) methods based on life 
history theory; 2) empirical relationships; 3) analysis of tagging data; 
and 4) analysis of catch-at-age data. We argue that estimators based on 
theory are generally more susceptible to violation of their underlying 
assumptions and consequently discuss them as a stepping stone to 
determine the relationships to use as empirical estimators. This section 
is therefore separated into empirical relationships (Subsection 2.1), 
tagging analysis (Subsection 2.2), and catch-curve analysis (Subsection 
2.3). 

2.1. Empirical estimators 

Empirical estimators, or those dependent on predictive relationships, 
are some of the most commonly applied ways to determine M for 
assessment of commercially managed fisheries within the U.S. and 
Australia. Table 1 lists the equations on which the methods of this sec
tion are based. We summarize the main types and groups of estimators, 
but there are often many variants within each type of estimator 
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(Kenchington, 2014; Then et al., 2015), only some of which are listed 
here. Table 1 shows a subset of the “revised” variants of some of the most 
popular relationships based on different data sets and/or assumptions 
about the error between the “well-known” values for M (those found in 
the literature and based on data for the stock under consideration) and 
the model predictions. 

Given that uncertainty and estimation error in M scales with M, and 
therefore untransformed data demonstrate substantial hetero
scedasticity, many analysts have taken the appropriate step of log- 
transforming both M and associated life-history covariates (e.g., Pauly, 
1980; Hoenig, 1983; Hamel, 2015), while others have not, or have not 
done so for a subset of analyses (e.g., Jensen, 1996; Then et al., 2015). 
Analyses based on untransformed data likely give too much weight to 
data points with high M estimates, and therefore skew the results and are 
likely to provide poor estimates, particularly for species with low M 
values, i.e., long-lived species. 

Observed variability in the relationship between covariates and M 
represents a combination of the actual variability in the relationship 
among taxa combined with error in the estimated values of M and 
covariates used (e.g., Gunderson et al., 2003; Hamel and Cope, 2022) 
and inconsistencies in assumed functional forms (e.g., von Bertalanffy 
growth, constant M across age). Data acquisition, including sampling 
issues and ageing error can affect estimates across the range of 
life-history parameters, and can affect each of the methods discussed 
below. 

2.1.1. M estimators based upon maximum age 
Conceptually, estimators based on maximum age should be preferred 

because maximum age, or longevity, relates more directly to, or arises 
from, M (or more accurately total mortality, but see below). Methods 
used to estimate M using the maximum observed age (tmax) are based on 
models of the probability of a fish living to a given age under a given 
level of total mortality. These, and in particular the inverse relationship 
of M to tmax , are theoretically appealing, as a population with a well- 
defined population maximum age follows the logic of a life table (Cas
well, 2001). The total mortality rate can be calculated from the standard 
exponential decay model of population dynamics,Nt = N0 exp( − Zt). 
This decay model is rearranged so that the proportion p living to at least 
a given age t is p = Nt/N0 = exp( − Zt). This equation can then be used 
to determine the probability of observing a given aged fish in a sample 
from the population (while ignoring ageing error). A rule of thumb used 
in the past to estimate M was M = 3/tmax (Eqn T1.2.1a; e.g., Rugolo 
et al., 1998) that derives from the formula M = -ln(p)/tmax (Eqn T1.2.1), 
where p = 0.05 is the proportion of fish that survive to age of tmax or 
older assuming constant M with age. Intuitively, tmax (and p) should 
represent an age at which senescence leads to high M and therefore 
relatively few older individuals. However, p = 0.05 is an arbitrary value. 
The appropriate value for p will depend on several factors including the 
sampling design, sample size, and the relative timing of the onset of 
senescence. 

Hoenig (1983) developed a non-linear empirical tmax-based esti
mator using a log-space regression of M on maximum age for 84 unex
ploited or lightly exploited stocks (Eqn T2.2.2a). Then et al. (2015) 
revisited this non-linear approach (Eqn T2.2.2.b) and another using 
non-linear least squares (Eqn T2.2.2c) with an updated and larger data 
set. Hewitt and Hoenig (2005) found an inverse relationship for M that 
was 40–50% higher than the M = 3/tmax rule of thumb (Eqn T2.2.1a), 
which suggests that the corresponding value of p is much lower (Hewitt 
and Hoenig, 2005). Hamel (2015) revisited Hoenig’s (1983) data and 
found an inverse relationship (Eqn T2.2.1b) close to that of Hewitt and 
Hoenig (2005). Then et al. (2015) evaluated an inverse relationship 
using their data set (Eqn T2.2.1c), but failed to transform the data. 
Hamel and Cope, 2022 evaluated Then ’s et al. (2015) data under a more 
appropriate transformation (Eqn T3.2.1). 

A lingering concern with estimating M from maximum age is that the 
estimate is based on the maximum age observed and not the maximum 

age in the population. Holt (1965) provided a closed form solution to the 
expected maximum age for a sample size of n: E(tmax) ≅ ln(2n + 1)/Z +

t1, where t1 is the age-at-first capture, from which total mortality (Z) can 
be computed (Hoenig, 2017). Hoenig (1983) argued that the maximum 
age tends to increase slowly with increasing sample size after about 200 
individuals have been examined (although this will depend on selec
tivity of the gears used to collect the samples and Z). However, there is 
some debate over the possible magnitude of the effective sample size and 
its influence (Hamel and Cope, 2022; Hoenig, 2017; Kenchington, 2014; 
Maunder and Wong, 2011). Nevertheless, since the proportion, p, is 
arbitrary and the effective sample size is usually unknown, we recom
mend using the empirical relationships rather than theory, finding that 
defining methods that include the sample size is not useful. Instead, it is 
assumed that the stock for which M is being estimated is a random 
sample from the population of stocks from which the stocks used to 
generate the relationship were also sampled randomly. This helps with 
other issues that affect the estimate of maximum age, such as ageing 
error. 

2.1.2. M estimators based on growth and reproduction 
Life history theory has been used to develop a multitude of re

lationships to estimate M (e.g., Roff, 1984; Charnov, 1993; Jensen, 
1996; Alverson and Carney, 1975; Gislason et al., 2010), based upon the 
idea that a species’ life history has evolved to maximize lifetime 
reproductive fitness or the population growth rate r through tradeoffs 
among reproduction, growth, and natural mortality (Roff, 1984). While 
a step removed from using longevity, information and/or assumptions 
about growth and reproduction can be used to infer M. 

In order to maximize lifetime reproductive fitness, maturity should 
occur when fecundity exactly matches, or exceeds, for the first time, the 
expected future fecundity losses from increased mortality and reduced 
growth due to the costs of reproduction. Since we do not generally know 
the exact impact of maturity on growth and mortality, various reason
able assumptions have been made. The first Beverton and Holt life his
tory invariant (Charnov, 1993): Mtm = C1 (Eqn T1.1.1) indicates that the 
age of maturity (tm) occurs when some particular proportion of a cohort 
remains, and thus is closely linked to longevity. Others have assumed 
that maturity should occur at peak cohort reproductive output (tmb or tc; 
Alverson and Carney, 1975; Roff, 1984; Zhang and Megrey, 2006), or at 
the inflection point of the von Bertalanffy growth equation (Jensen, 
1996). In situations where both tm and von Bertalanffy K are known, 
Roff’s (1984) original equation would apply (Eqn T1.1.3). Alverson and 
Carney (1975) approximate tmb as a constant fraction of maximum 
observed age (tmax) based on regressions with empirical data, and do not 
account for variation in the relative age of maturity. Zhang and Megrey 
(2006) generalized Eqn T1.1.3 to include population-specific values for 
t0 and β (a difficult proposition; Eqn T1.1.4) and recommend using data 
to calculate tmb based on regression with tmax from specific ecological 
groups. 

The second Beverton and Holt life history variant (Charnov, 1993): 
M/K = C2 (Eqn T1.1.2) suggest that M is proportional to K, and hence 
that an increased rate of growth towards maximum size is correlated 
with increased mortality rate. Jensen (1996) calculated the constants of 
the Beverton and Holt invariants (Eqns T 1.1.1 and T1.1.2) assuming 
that the age at maturity equalled the age at the inflection in the von 
Bertalanffy growth equation in weight and assuming Roff’s equation 
(Eqn T1.1.3). 

More complicated approaches have been used to estimate M based 
on life history. Beverton (1992) derived a relationship among 
length-at-maturity (Lm), asymptotic length (L∞), von Bertalanffy K, and 
M (Eqn T1.1.5). Chen and Watanabe (1989) provided a function for 
age-specific M, with higher rates at young and old ages based on the von 
Bertalanffy growth parameters using the assumption that mortality is 
inversely proportional to growth (Eqn T1.1.6). 

Empirical relationships have been developed via regressions using 
“well known” estimates of M against life-history covariates. Pauly 
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(1980) conducted one of the earliest comprehensive analyses by 
regressing M on von Bertalanffy growth rate (K) and asymptotic size 
(either weight or length), and water temperature (T) using data for 175 
marine and freshwater fish stocks (Eqn T2.3.3; converted to natural 
logarithms; Quinn and Deriso, 1999). Using data for the 175 stocks in 
Pauly (1980), Jensen (1996) estimated M/K = 1.60 (Eqn T2.3.4a). 
However, this analysis was conducted without log transformation of the 
data, and therefore is subject to impacts of heteroscedasticity. Then et al. 
(2015) made the same assumption in analysing their data (Eq. T2.3.4c). 
Hamel (2015) analysed data from Pauly under log transformation and 
estimated M = 1.75 K (Eq. T2.3.4b). Conducting the same analysis using 
the updated data set from Then et al. (2015) leads to the relationship M 
= 1.55 K (Eqn T3.3.4). Beverton (1992) suggested that M/K would vary 
among taxa, ranging between 0.2 and 2.5 across species, questioning the 
invariant nature of this ratio (Nee et al., 2005). Ralston (1987) provided 
M/K relationships for snappers and groupers (Eqn T2.3.5). Using a 
similar approach, Charnov and Berrigan (1990) found that Mtm ~ 2 (Eqn 
T2.3.6). Beverton (1963) estimated Mtm at 1.54 for cod, 1.54 for flatfish, 
and 3.33 for brown trout. These results provide a wide range of values 
but are somewhat consistent with relationships using life history theory. 
Finally, Thorson et al. (2017) present a taxonomically based hierarchical 
model and tool (FishLife) that constructs species-specific M/K (as well as 
M by itself) using the FishBase database. 

Body length and weight (or mass) have also been used as predictors 
of M. Lorenzen (1996) analysed the relationship between body weight 
and M in juvenile and adult fish for six aquatic ecosystems types (lakes, 
rivers, ocean, pond, cage, and tank aquaculture systems) using a power 
function. The parameters were estimated for fish in the six ecosystems, 
as well as within selected populations, species and families. At the 
ecosystem level, no significant differences in parameters were found 
between lakes, rivers and the ocean, and a joint relationship was esti
mated for all natural ecosystems (Eqn T3.3.10). Eqn T3.3.10 allows for 
size-specific M, although it can also be used to obtain an overall M. 
McGurk (1987) fitted a similar model to Lorenzen (1996) but obtained a 
different exponent (Eqn T2.3.8). Gulland (1987) responded to the work 
of McGurk (1986), providing estimates of M based on weight or length 
(Eqns T1.3.1 and T1.3.2), and Peterson and Wroblewski (1984a), 
(1984b) provided an equation for M as a function of size formulated on 
Silvert and Platt’s (1980) work related to the theory on the distribution 
of biomass as a function of size (Eqn T2.3.9). All of these relationships, 
as with many others discussed here, display wide variability, and 
therefore the relationship is uncertain and likely variable among taxa 
and stocks. 

Based on the r-K selection theory, M is expected to be positively 
correlated with reproductive effort (Gunderson, 1980; Gunderson and 
Dygert, 1988). Gunderson and Dygert (1988) provided a linear rela
tionship between M and the gonadosomatic index (GSI = ovary weight/ 
somatic body weight) and Gunderson (1997) updated the relationship 
using 28 stocks of fish to yield M = 1.79GSI (Eqn T2.3.7). This analysis 
was undertaken on untransformed data. Hamel (2015) analysed these 
data after log-transformation and found a similar relationship of M 
= 1.82GSI (Eqn T3.3.7). However, there are several issues with 
providing accurate values for GSI, including annual variability due to 
feeding conditions (Gunderson and Dygert, 1988), reproductive stage, 
and the timing within spawning season. 

Each of the above methods use differing degrees of relatedness to M 
(maximum age the strongest, size or weight much less strong) to form 
predictors with a range of values, and are only as good as the inputs. 
Given the various degrees of separation to M and the reliability of life 
history value estimates, there is no one superior approach. Applying 
multiple empirical estimators is recommended when determining either 
a fixed value to use within a stock assessment, or a prior to aid esti
mation of M internal to a stock assessment (Hamel and Cope, 2022). 

2.1.3. Performance 
The ‘performance’ of each method is the difference between the true 

value and the value from the prediction equation. However, in practice 
the true value is never known. Instead, we evaluate the prediction based 
on its uncertainty. The error associated with estimates of M based on 
empirical methods reflect error in creating the relationship and error in 
the covariates for the specific stock being analysed. Error in creating the 
relationship includes model error (i.e., the equation used for prediction 
is wrong) and estimation error, which encompasses error associated 
with measurements of the covariates for the species used to create the 
relationship and to which it is applied, error in the values of M used to 
create the relationship, and variation in the relationship among species 
or stocks. 

Empirical methods offer insight into the relationship between M and 
other life history parameters. However, accurate estimates of M based 
on life history theory require accurate estimates of associated life history 
parameters. Any error or bias in these quantities will impact the pre
dictions of M (Quinn and Deriso, 1999), although those errors exist in 
the data used to create the relationships, and so those actually represent 
the relationship between estimated, rather than true values of life his
tory covariates and M. Estimates of K are often confounded with esti
mates of L∞ (e.g., Fig. 1), and there may be considerable uncertainty in 
the estimate of K for the same species across regions. For example, es
timates of M based on Jensen’s empirical relationship, M = 1.6 K, for 42 
data sets for dorado (Coryphaena hippurus) stocks presented in Chang 
and Maunder (2012), which include different data types and aging 
methods, range over an order of magnitude (Fig. 1). K may also change 
over time. Similarly, estimates of M based on tm will be somewhat un
certain, because maturity may occur over a range of ages and may vary 
across years and with environmental conditions, the method used to 
estimate maturity may be inaccurate, or there may be ageing or sam
pling errors leading to uncertainty in the estimate of tm. The relationship 
between M and the life history parameters may differ from the theory for 
individual species, leading to additional uncertainty in the estimates of 
M. Trade-offs between reproductive effort and adult growth or survival 
have been reported in many field studies and manipulation experiments 
(e.g., Roff, 1992; Stearns, 1992), indicating that the life-history pa
rameters and/or the relationships may vary over time. For example, 
estimates of M based on K vary substantially over time for English sole 
(Parophrys vetulus) off the US West Coast ( Table 2). Finally, since M is 
likely to vary with age, a single estimate from life history will be 
incorrect to some degree for some ages even if it is correct on average. 
However, attempting to account for variation in M with age does not 
guarantee a more accurate result. 

The observed or estimated maximum age will be affected by the 
recruitment and exploitation history of a stock. For example, if there are 
infrequent large spikes in recruitment, the maximum aged fish is more 
likely to come from the cohort represented by a large recruitment event, 
particularly for species with shorter lifespans. Where fishing mortality 
has been significant, selectivity, refugia and sampling approach are all 
important factors. There are other issues related to applying methods 
based on maximum age, including ageing error and age-dependence in 
M. Consequently, some analysts ignore the oldest recorded age if it is 
perceived to be an outlier (and perhaps an age-reading error) and use the 
second oldest age, the oldest age that has a few observations, or a 
percentile. For example, Monk et al. (2018) conducted an analysis for 
California scorpionfish (Scorpaena guttata) where M was determined by 
averaging the three oldest estimated ages of each sex, and Wetzel et al. 
(2017) used an age less than the maximum age to account for possible 
aging error based on the range of other ages available with multiple 
observations. However, these assumptions are ad hoc. Maximum age 
relationships can also be used to evaluate whether the other relation
ships make sense (Cope and Hamel, 2022). 

Evaluating the prediction error of M for empirical approaches is 
complicated due to the multiple sources of uncertainty, which are usu
ally unknown (Hoenig et al., 2016; Hamel, 2015). Hamel (2015) high
lighted the importance of the difference between prediction intervals 
and confidence intervals when considering methods for predicting M 
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using covariates such as maximum observed age, growth parameters, 
and GSI, noting the considerable difference between the two (Fig. 2), 
with the latter encompassing the expected range of a new observation. 
The sources of error include error in the values of M used in the 
regression, error in the measurement of the covariates (e.g., K, Amax), 
individual variability in M given the covariates, error in the model used 
to represent the relationship, and error due to finite sample size. Without 
information on these components of the uncertainty, completely unbi
ased estimates of the uncertainty in the value of M are not possible. 
Confidence intervals for the regression will underestimate the uncer
tainty, providing uncertainty around the mean M given observed cova
riates, while prediction intervals, which represent variability in the 
estimated value of M (i.e., what was used in the regression), will over
estimate the uncertainty in the true value of M due to incorporating both 
true variation in the relationship between estimated covariates and M 
and estimation error in the M values used for the regression (Hamel and 
Cope, 2022). When using these empirical relationships as the basis for 
priors for M in stock assessment, Hamel and Cope, 2022 recommend 
reducing the width of the prediction intervals, and priors, based on 
reasonable assumptions. 

Attempts to quantify the error associated with empirical methods for 
estimating M have been based on cross-validation and regression di
agnostics. For example, Pascual and Iribane (1993) computed the 

prediction errors associated with estimators of M based on growth pa
rameters and temperature (Pauly, 1980), gonad weight (Gunderson, 
1980; Gunderson and Dygert, 1988), and body length (Oshumi, 1979) 
and found median prediction errors from 10% to 36%. Prince et al. 
(2015) fitted the model of Beverton (1992) to 123 marine species data 
sets and found considerable variation in the Beverton-Holt life history 
invariants among species, concluding that there is “predictable natural 
variation in the BH-LHI ratios and the relationships between size, age, and 
reproductive potential that they determine”. Kenchington (2014) concluded 
that none of the 30 estimators he examined provided accurate estimates 
for every species, and none appeared sufficiently precise for use in 
analytical stock assessments, while several performed so poorly as to 
have no practical utility. This conclusion likely applies to most empirical 
methods, but in many cases, empirical estimates of M are the only op
tions. Thorson et al. (2017) conducted an extensive investigation of life 
history ratios and found that the ratio M/K varies systematically based 
on the timing of maturation, which is correlated with species taxonomy, 
following similar conclusions by Beverton (1992). 

Attempts to quantify the uncertainty associated with estimating M 
using empirical methods lead to levels of error from 50% to 200% of the 
estimate based on Kenchington (2014), whereas MacCall (2009) found a 
CV of 50% based on the methods he reviewed. The two methods 
developed and preferred by Then et al. (2015) had prediction errors of 

Fig. 1. Correlation between von Bertalanffy growth rate, K(y-1), and asymptotic length, L∞ (cm), parameters (top) and estimates of natural mortality, M (y-1) 
(bottom) based on Jensen’s empirical relationship, M = 1.6 K for the 42 estimates of the von Bertalanffy K for dorado (Coryphaena hippurus) from different data and 
stocks presented in Chang and Maunder (2012). 
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32% and 60% (based on that which used tmax and another based on 
growth parameters). 

Hamel (2015) developed an approach for combining priors for M 
based on multiple methods, weighting each prior by the inverse of its 
prediction variance, and accounting for the overlap in the data used in 
the construction of the equations on which the methods are based. 
Hamel and Cope, 2022 expand on this work and that of Then et al. 
(2015) to develop a new age-based prior. Cope and Hamel, 2022 present 

a tool (The Natural Mortality Tool) that offers ways of developing priors 
based on maximum age and other relationships while incorporating 
intra- and inter-method variability. The CVs of the distributions for M 
based on the method of Hamel (2015) depend on the number of 
empirical methods that can be applied. In practice, this method led to 
estimates of M with CVs ranging from 28% to 58% for US West Coast 
groundfish stocks. In recent years, assessments for these stocks set M 
based on maximum age alone, using the updated Then et al. (2015) data 

Table 1a  
Equations for representing or estimating natural mortality: theoretical approaches. M is the instantaneous rate of natural mortality, K is the growth rate, L∞ is the 

asymptotic length, W∞ is the asymptotic weight, t0 is the theoretical age at which the fish would have length zero, tm is the age at maturity, tm* is the age at the end of 
reproductive span (where senescence starts; Chen and Watanabe, 1989), Lm is the length at which 50% of a year-class reaches maturity, tmax is the maximum age, p is 
the proportion surviving to the maximum age, T is water temperature, GSI is the gonadosomatic index, L is length, W is body weight, M* is the limiting value of M 
approached by the largest fish, β is the exponent of the weight-length relationship, tc is the critical age (the time that the cohort achieves its maximum biomass, Zhang 
and Megrey, 2006).  

Approach Reference Notes Equation Eqn No 

Life history approaches    
Jensen tm Jensen (1996)  M = 1.65/tm T1.1.1 
Jensen K Jensen (1996)  M = 1.5 K T1.1.2 
Roff 

Roff (1984)  
M = 3K/(exp(tmK) − 1) T1.1.3 

Zhang and Megrey 
Zhang and Megrey (2006) 

tc could be tm or a fraction of tmax M = βK/(exp(K(tc − t0)) − 1) T1.1.4 

Beverton 
Beverton (1992) 

Lm/L∞ = 3/(3 + M/K)
M = K

(3L∞

Lm
− 3

)
T1.1.5 

Chen and Watanabe 
Chen and Watanabe (1989) tm* = −

1
K

ln
[
1 − eKt0

]
+ t0 

a0 = 1 − e− K(tm* − t0)

a1 = Ke− K(tm* − t0)

a2 = −
1
2
K2e− K(tm* − t0 )

M =

⎧
⎪⎪⎨

⎪⎪⎩

K
1 − e− K(t− t0)

,

K
a0 + a1(t − tm*) + a2(t − tm*)

2

t ≤ tm*
t ≥ tm* 

T1.1.6 

Maximum age     
Proportion surviving to maximum age  p = proportion remaining M = -ln(p)/tmax T1.2.1 
Rule of thumb 

M correlations  
p = 5% M = 3/tmax T1.2.1a 

Gulland-W Gulland (1987)  M = M(L/L∞)-1.5 T1.3.1 
Gulland-L Gulland (1987)  M = M(W/W∞)-0.5 T1.3.2       

Table 1b  
Equations for representing or estimating natural mortality: non-recommended empirical. * = old data set ^ = questionable substitution # = no transformation ‘ 
= overly complex.  

Approach Reference Notes Equation Eqn No 

Maximum age     
Inverse 

relationship-1 
Hewitt and Hoenig (2005)  M = 4.22/tmax T2.2.1a* ^ 

Inverse 
relationship-2 

Hamel (2015)  M = 4.374/tmax T2.2.1b* 

Inverse 
relationship-3 

Then et al. (2015)  M = 5.109/tmax T2.2.1c# 

Hoenig 
Hoenig (1983) 

Fish, converted from ln(M) = 1.46–1.01 ln(tmax) M = 4.31t− 1.01
max T2.2.2a* ’ 

Mollusks, fish, and cetaceans, Converted from ln(M) = 1.44–0.982ln 
(tmax) 

M = 4.22t− 0.982
max 

Hoenig-revised-1 
Then et al. (2015) 

Converted from ln(M) = 1.717–1.01ln(tmax) M = 5.568t− 1.01
max T2.2.2b’ 

Hoenig-revised-2 
Then et al. (2015) 

Nonlinear least squares M = 4.899t− 0.916
max T2.2.2c# 

M correlations    
Pauly 

Pauly (1980) 
Converted from log10(M) = − 0.0066 - 0.279 log10(L∞) 
+ 0.6543 log10(K) + 0.4634 log10(T) 

M =

0.9849K0.6543L− 0.279
∞ T0.4634 

T.2.3.3 * 

Empirical K Jensen (1996)  M = 1.60 K T2.3.4a* # 
Empirical K- 

revised-1 
Hamel (2015)  M = 1.753 K T2.3.4b* 

Empirical K- 
revised-2 

Then et al. (2015)  M = 1.692 K T2.3.4c# 

Ralston 
Ralston (1987)  

M = − 0.0666 + 2.52K T2.3.5 * 

Empirical tm Charnov and Berrigan (1990)  M = 2/tm T2.3.6 * 
Gunderson Gunderson (1997)  M = 1.79GSI T2.3.7# 
McGurk McGurk (1987) Converted from ln(M) = − 4.778 − 0.397ln(W) for daily mortality M = 3.07 W—0.397 T2.3.8 * 
Peterson - 

Wroblewski 
Peterson and Wroblewski 
(1984a), (1984b)  

M = 1.92 W—0.25 T2.3.9 *  
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along with the method from Hamel (2015), which results in a CV of 46%. 
In some applications the predicted value has been used as a fixed value 
for M while in others the information is used to create a log-normal prior 
(median = 5.4/tmax and log-space sd = 0.438). For example, Haltuch 
et al. (2017) conducted two analyses in which the first fixed female M at 
the median of the prior based on a maximum age of 21 and the male M 
was estimated and the second estimated male and female M (with 
priors). Hamel and Cope, 2022 take the same analysis, but account for 
error in M values in the meta-analysis to arrive at a log-space prediction 
error = 0.31 (or CV = 32%). 

Table 1 provides estimation equations based on theory or “rules of 
thumb” (Table 1a), equations based on empirical analysis methods that 
are not or no longer recommended (Table 1b) and equations for methods 
that are recommended (Table 1c). Recommended methods are based on 
more recent and well-vetted data sets and use more appropriate trans
formations for analysis. 

2.2. Mark recapture methods 

2.2.1. Overview 
Mark-recapture data can be the basis for reliable ways to estimate M 

(Vetter, 1988; Fonteneau and Pallares, 2005). The methodology has 

been well studied, and the properties of the commonly used estimators 
are well understood (e.g., Seber, 1982; Brownie et al., 1985; Lebreton 
et al., 1992). The basis for estimating survival rates in most tagging 
methods is the ‘Brownie model’ (originally summarized by Brownie 
et al. (1985)). Given an estimate of the reporting rate, this method al
lows the estimation of natural and fishing mortality. Latour et al. (2003) 
discuss tagging lobsters just below and just above the legal size limit, 
which allows separating F from M without having to know the tag 
reporting rate. Pollock et al. (1991) expressed total mortality in the 
Brownie model in the form of continuous natural mortality and fishing 
mortality rates. The basic methods for estimating M (and other quanti
ties) using tag-recapture data have been extended in numerous ways 
given the particular concerns for specific cases. For example, Hoenig 
et al. (1998a) extended the basic approach so that fishing effort can be 
used as an index of fishing mortality, and Hoenig et al. (1998b) illus
trated how to allow for non-mixing of tagged animals. Jiang et al. 
(2007a) extended the approach to allow fishing and natural mortality to 
depend on age while Jiang et al. (2007b) showed how it is possible to 
allow for animals that are caught and released and subsequently har
vested. Bacheler et al. (2008) extended the latter model by allowing for 
differential selectivity between fish that are harvested and those caught 
and released. Rudd et al. (2014) developed a spatially explicit tag-based 
model that permitted estimation of M among spatial strata and fitted it 
to acoustic telemetry data for Gulf sturgeon (Acipenser oxyrinchus 
desotoi). 

Integrating the tagging data into the stock assessment model has 
several advantages (Maunder, 1998, 2001). Sibert (1984) and Hilborn 
(1990) developed a multi-area stock assessment framework in which 
tagging data are used to estimate movement. This framework can make 
use of tagging data as well as other conventional stock assessment data. 
Hampton (1991) applied this framework to data for southern bluefin 
tuna (Thunnus maccoyii) and tested it using simulations. While estimates 
of M were obtained, they were highly imprecise (CV > 100% for some 
cases). Better precision is expected with improved sample designs and 
higher sample sizes. 

Table 1c 
Equations for representing or estimating natural mortality. Only the recommended estimator of each class is provided, other estimators are given above.  

Approach Reference Notes Equation Eqn No 

Maximum age     
Inverse Relationship Hamel and Cope, 2022 Uses Then et al. (2015) data 

SD in log space = 0.31 
M = 5.4/tmax T3.2.1 

M correlations    
Pauly-revised 

Then et al. (2015)  M = 4.1181K0.73L− 0.33
∞ T3.3.3 

Empirical K Hamel and Cope, 2022 Uses Then et al. (2015) data 
SD in log space = 0.85 

M = 1.55 K T3.3.4 

Gunderson-revised Hamel (2015)  M = 1.817GSI T3.3.7 
Lorenzen Lorenzen (1996)  M = 3 W-0.288 T3.3.10  

Table 2 
Estimates of M (yr-1) from K (yr-1) using Jensen’s (1996) theoretical relationship 
M = 1.5 K for the values of K estimated in the English sole stock assessment 
(Stewart, 2007).   

K M 

Year Female Male Female Male 

1876–1960 0.36 0.48 0.54 0.72 
1961–1970 0.34 0.45 0.51 0.68 
1971–1980 0.24 0.33 0.36 0.49 
1981–1990 0.22 0.29 0.32 0.43 
1991–2006 0.22 0.29 0.33 0.44  

Fig. 2. Relationships between maximum age (left), von-Bertalanffy K (middle), and gonadosomatic index (right) and natural mortality with 95% confidence intervals 
(dotted lines) and prediction envelopes (dash lines) from Hamel (2015). 
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Non-mixing of tags can be accounted for by estimating a parameter 
to represent the difference in fishing mortality in the first few periods 
while the tagged fish are mixing with the untagged fish. In applications 
where tagged fish never fully mix with untagged fish or fishing effort is 
unavailable, cohort analysis can be applied to the tagging data. For 
example, the Murphy-Tomlinson method (Bayliff, 1971) is based on 
applying a virtual population analysis to tagging data (e.g., Maunder 
et al., 2009). This method has the advantage that knowledge of the 
fishing effort or the numbers of non-tagged fish is not required. How
ever, either all the tagged fish have to be dead after some time or a 
terminal fishing mortality has to be assumed. It also requires that the 
total number of tagged fish removed is known, which implies that the 
reporting rate is 100% or known. The more general approach is that of 
Ishii (1979) and Hilborn (1990), which simulates the dynamics of the 
tagged population, accounts for fish removed from the population due to 
fishing and is more consistent with contemporary integrated fisheries 
stock assessment models (e.g., Maunder and Punt, 2013). Maunder 
(1998, 2001) and Hampton and Fournier (2001) have extended tagging 
analysis into the integrated fisheries stock assessment modelling 
framework (see Goethel et al., 2011) and it is now commonly found in 
integrated packages used for assessments (e.g., Methot and Wetzel, 
2013). 

2.2.2. Performance 
Extensive evaluation of tag-based approaches for estimating mor

tality has been undertaken to understand the reliability of the estimates 
of the parameters of tag-based models, particularly in “self tests” in 
which the model used to generate artificial data sets is the same as that 
on which the estimator is based. However, there are notable exceptions. 
For example, Lauretta and Goethel (2017) examined the performance of 
a tag-based estimator of movement and mortality focused on Atlantic 
bluefin tuna Thunnus thynnus using an operating model based on a 
continuous time model and generated artificial conventional and 
gene-based tagging data. 

Common issues with tagging analysis include non-reporting of tags, 
tag shedding, and tag-induced mortality (either initial or long-term) 
(Pollock, 1991). Underestimates of the magnitude of these alternative 
explanations for tag loss results in positively biased estimates of M, and 
it is therefore important to either minimize these factors through 
well-designed tagging studies or to have reliable estimates of them. 
Non-mixing of tagged fish with the untagged population is also a com
mon issue and may bias estimates of M. Tagging may also modify fish 
behaviour, changing their vulnerability to capture. Estimates of M may 
also be biased by migration if it is not appropriately accounted for. 

If sample sizes are adequate and the appropriate information 
collected, estimates of M can be obtained for different components of the 
population (e.g., by size [Hampton, 2000] or sex). While tagging-based 
methods provide, in principle, unbiased estimates of M, the estimates for 
particular cases can be quite poor, making it near impossible to provide 
generic bounds on how precise estimates of M based on tagging are 
likely to be, as precision is directly related to the number of 
tag-recaptures. For example, Frusher and Hoenig (2001) estimated M for 
southern rock lobster (Jasus edwardsii) to be 0–0.018 yr-1, with 95% 
confidence intervals that included 0.3 yr-1 and larger. The low estimate 
of M was attributed to confounding with the tag-reporting rate and the 
relatively low sample size. A more realistic (and precise) estimate of 
0.12 yr-1 (SE 0.14) was obtained by Frusher and Hoenig (2003) when 
they related fishing mortality to effort, assuming constant catchability 
over years but unequal catchability within periods of the year. Estimates 
of M by age/stage have rarely been obtained. However, Hampton (2000) 
estimated size group-specific M for skipjack (Katsuwonus pelamis), yel
lowfin (Thunnus albacares), and bigeye tuna (Thunnus obesus) in the 
western tropical Pacific Ocean, with CV ~ 25%. 

Close-kin mark-recapture (CKMR) is an approach that integrates 
genetic methods of population estimation and population dynamics 
models to estimate abundance and potentially a range of demographic 

parameters including natural mortality-at-age. The approach uses ge
netic markers to identify animals that are related (e.g., parent-offspring 
pairs; half sibling pairs, and perhaps other relationships; Skaug, 2001; 
Bravington et al., 2016a). The data are analysed within the general 
framework of mark-recapture data, but the analysis is not subject to 
many of the problems typically associated with conventional tagging 
data such as tag-loss, tag mortality, and tag reporting. The method re
quires an assumption that the spawning component of the population is 
discrete and sampled proportionally. The estimates of absolute abun
dance from CKMR can be more precise than those from typical stock 
assessments (CV = ~0.17 for southern bluefin tuna; Bravington et al., 
2016b) and even the estimates of survival are remarkably precise (CV =
~0.03 for southern bluefin tuna; Bravington et al., 2016b). 

2.3. Catch curve type methods 

2.3.1. Overview 
Catch-at-age data are commonly collected for commercially exploi

ted species, and the age-structure of the population provides informa
tion on total mortality. Catch-curve analysis is based on the decline in 
cohort abundance through time [i.e., Nt = N0e− Zt]. If the absolute 
numbers in a cohort are known for two time periods (e.g., at ages t and 
t + 1), then the difference is the total number of individuals that die 
during that time period. However, it is typical that only relative numbers 
are known, so only the rate of total mortality can be determined. There 
are two types of catch-curve analysis and they both assume there is no 
trend in fishing mortality over time. The first, cross-sectional catch curve 
analysis, creates a “synthetic” cohort (Quinn and Deriso, 1999) from a 
single year of data, and assumes that all ages have the same selectivity 
(catchability) and that recruitment shows no trend over time (Tuckey 
et al., 2007). Multiple years of data may be averaged to reduce the in
fluence of variation in recruitment. The second, longitudinal catch curve 
analysis likewise typically assumes that all ages have the same selec
tivity (catchability), but also assumes catchability remains the same 
from year to year and requires a reliable measure of relative abundance 
(e.g., CPUE) (Tuckey et al., 2007). The benefit of longitudinal catch 
curve analysis is that it does not make any assumptions about recruit
ment. Tuckey et al. (2007) outline diagnostics applied to multiple catch 
curves (i.e., several years of catch-at-age data) to evaluate whether the 
assumptions have been violated and the possible causes. 

Catch curve methods (e.g., regression of log-numbers on age, i.e., ln 
(Nt) = ln(N0) - Zt, or the Chapman and Robson, 1960 method) can be 
applied to estimate M directly in cases where fishing mortality is known 
to be negligible (e.g., the samples are taken from an MPA, assuming that 
M in areas open and closed to fishing are the same) (e.g., Beverton and 
Holt, 1957). More generally, catch-at-age data include the effects of both 
fishing and natural mortality. If total mortality (Z) has been estimated, 
for example, based on catch curve methods, it can be regressed on effort 
E to estimate M (Beverton and Holt, 1956):  

Z = M + qE + ε                                                                             (1) 

where q is the catchability coefficient and the intercept (effort = 0) is an 
estimate of the M (Quinn and Deriso, 1999). This assumes that the 
relationship between fishing mortality and effort is linear and measured 
accurately. The estimates of M will be biased if the relationship is 
nonlinear, as is often the case (Harley et al., 2001; Rose and Kulka, 
1999), and potentially more so if the relationship between biomass and 
catchability is nonlinear. In addition, since catch curves assume sta
tionary mortality over age and time for enough years to use a linear 
regression to reliable estimate Z, this approach is probably not practical 
in most situations. Therefore, catch curve analysis that does not use data 
from an unexploited population or does not have other data to estimate F 
(e.g., when integrated into a stock assessment model), is unlikely to 
provide reliable estimates of M. 

Catch curve methods can be made more sophisticated by integrating 
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them into population models along with the relationship Z = M +qE. 
Paloheimo (1980) developed the first cohort-based regression model 
using catch-at-age and effort data to estimate catchability (q), M, and 
recruitment using multiple regression. Paloheimo and Chen (1996) 
improved the method by developing a more appropriate error structure. 
Correlation between estimates of M and q is usually high, but separation 
may be possible if fishing effort varies substantially among years (Pal
oheimo and Chen, 1996). This approach can be considered a modifica
tion of catch-curve analysis that analyses multiple cohorts 
simultaneously and is a stepping stone towards contemporary integrated 
fisheries stock assessment methods. 

Catch-at-age data are sparse for some poorly sampled or difficult to 
age stocks. In such cases, length-frequency data can be converted into 
age-frequencies using an age-length key, although the estimates of 
catch-at-age might be biased if the age-length key is borrowed from 
another year (or years). Beverton and Holt (1957) developed a simple 
catch curve-based estimator for mortality using length-frequency data 
and the von Bertalanffy growth parameters (L∞ and K), i.e.: 

Z = K
L∞ − L
L − Lc

(2)  

where Lc is the length at first capture, selectivity is knife-edged, and L is 
the average length of those animals longer than Lc. This approach does 
not require age data for every year, but generally does require some age 
data to estimate the parameters of the von Bertalanffy growth curve. 
These methods have been extended into a family of stock assessment 
methods designed to estimate mortality with a series of diagnostic tests 
of the assumptions of these methods (e.g., a test for dome-shaped 
selectivity) (Then et al., 2018).  

Authors Data Assumptions/details 

Beverton and Holt 
(1956) 

mean length Equilibrium 

Gedamke and Hoenig 
(2006) 

mean length, several 
years 

time-varying Z 

Gedamke et al. (2008) mean length, index of 
recruits 

time-varying Z and recruitment 

Huynh et al. (2017) mean length, overall 
catch rate 

time-varying Z and recruitment 

Then et al. (2018) mean length, effort Estimates q and M (thus annual 
F and Z)  

2.3.2. Performance 
The accuracy of catch curve analysis is influenced by several factors 

such as whether the method is applied to data for a true cohort or to a 
synthetic cohort, and whether selectivity is known. In addition, any 
error in the age data will influence the results of a catch-curve analysis. 
Estimates of mortality will also be confounded with migration. There are 
also concerns with double use of the catch-at-age data if estimates of M 
based on catch curves are then introduced into assessments that fit to the 
same data as part of the overall likelihood. 

Wilderbuer and Turnock (2009) applied the standard catch curve 
and Chapman-Robson methods, along with the empirical method of 
Hoenig (1983) to data for arrowtooth flounder Atheresthes stomias in 
Alaska, which is lightly fished, with the estimates of M differing among 
methods and years (0.11 – 0.51 yr-1). Estimates of M based on an inte
grated analysis assessment fell within the range of estimates from the 
other methods. The major problem with regressing Z on effort (and 
methods based on more sophisticated approaches) is that estimates of M 
and q are highly correlated as they both contribute to total mortality, 
and the method fails to account for transient behaviour when estimating 
Z, resulting in bias (Punt et al., 2021). Changes in M will also be 
confounded with changes in the catchability of survey index 
age-patterns as illustrated mathematically by Zhang et al. (2020). 

The selectivity of the gear used to collect the catch-at-age data in
fluences relative abundance-at-age. Typically, the data used to develop a 

catch curve show an initial increase in the abundance of subsequent age 
classes of young fish in the catch. This is typically interpreted as 
increasing selection to the gear, which normally is followed by a 
decrease that is due to mortality (Quinn and Deriso, 1999). It is therefore 
common to ignore the first few ages that are not fully selected by the 
gear. Unfortunately, it is often difficult to determine which age is fully 
selected and selectivity may decline with age for older fish. 
Domed-shaped selectivity patterns are confounded with mortality 
(Thompson, 1994), and assuming a misspecified asymptotic selectivity 
curve will result in positively biased estimates of mortality. The choice 
of ages is generally done in an ad hoc fashion by choosing the ages that 
show a linear decline (Quinn and Deriso, 1999). Smith et al. (2012) 
review and evaluate which ages to use. 

Zhou et al. (2011) estimated M for grooved tiger prawns (Penaeus 
semisulcatus) based on a state-space weekly delay-difference model fitted 
using the Bayesian framework to periods during the year when there is 
little recruitment, thus approximating the Z = M +qE approach. The 
estimate of M was 0.053 wk-1 (95% credibility interval 0.028–0.078 
wk-1). Kienzle et al. (2016) estimated M for brown tiger prawns (Penaeus 
esculentus) based on a similar model fitted to catch data by week. Two of 
the scenarios considered by Kienzle et al. (2016) estimated M, leading to 
a very precise estimate of M (best model 0.032 wk-1, SE 0.002). Simu
lation self-tests for this estimator confirmed that it was able to reproduce 
the true parameter values, given assumptions were not violated. Then 
et al. (2018) extended the estimator of Z developed by Gedamke and 
Hoenig (2006) by adding a time-series of fishing effort, and year-specific 
estimates of Z. While this method may provide reliable information on 
changes in Z over time, the correlation between M and q is high (− 0.999 
for Norway lobster Nephrops norvegicus off Portugal), resulting in poor 
precision in those parameters when M and q were estimated simulta
neously, and thus poor ability to estimate M. 

2.4. Estimating M within integrated population models 

2.4.1. Fitting population models without consumption information 
All of the major packages used to conduct stock assessments based on 

the ‘integrated’ paradigm include the option for estimating M, generally 
as a constant, but also optionally as a function of age, sex and time (Punt 
et al., 2021, see also the summary of assessment packages by Dichmont 
et al., 2016). In the past, there has been skepticism about estimating M 
within an assessment. For example, Schnute and Richards (1995) argued 
that M is only estimable when catch-at-age data are available back to the 
start of the fishery, when the population was unexploited and, in addi
tion, constraints on the pattern of recruitment are needed. However, an 
increasing number of assessments conducted in jurisdictions such as the 
USA, Australia, New Zealand and South Africa at least consider treating 
M was an estimable parameter (Punt et al., 2021). 

Intuitively, estimating M within an assessment is equivalent to 
integrating a catch-curve-type analysis into the assessment and Butter
worth and Punt (1990) show that M is estimable (in principle) within an 
integrated assessment when M is independent of age, time, and sex, 
catch-at-age data are available, fishery selectivity is constant over time 
and asymptotic, and an index that is linearly proportional to abundance 
is available. Unfortunately, it is seldom the case that all of these as
sumptions are valid (or can be shown to be valid). Consequently, 
whether the estimate of M from an integrated assessment is reliable (in 
the sense of being unbiased and fairly precise) will be case-specific. The 
ability to estimate M reliably depends on the data that are available, the 
other parameters estimated in the assessment, and whether M is 
assumed to be time-varying (as might be expected given climate change) 
or age- or sex-specific. The best case is when age data at the start of a 
fishery provides information on M, while later age data provide infor
mation on total mortality, allowing the separation of fishing and natural 
mortality (e.g., for blue grenadier Macruronus novaezelandiae; Punt et al., 
2001). However, it is seldom the case that age data are available from 
the start of exploitation. Another possibility is when the stock has 
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collapsed and there is a fishing moratorium and catches are very low for 
several years. However, this situation provides information on M at low 
stock sizes and density-dependent effects could be a concern. 

Fournier et al. (1998) were able to obtain fairly precise estimates of 
age-specific natural mortality for albacore tuna Thunnus alalunga using 
catch-at-length data, perhaps because of integrating several types of 
data from multiple gears, and the method of parameterizing selectivity 
and M. Several studies involving simulating data sets from known 
populations have explored the extent to which M is estimable (see 
Table 1 of Punt et al., 2021, for a summary), and Sipple et al. (2017) 
identified the age-structured production model diagnostic as a means of 
assessing when M can be estimated. 

Particular concerns when estimating M within an assessment include 
that its estimate may be highly confounded with other parameters (e.g., 
catchability of the index of abundance, the growth rate; trends in 
recruitment, and the declining slope of a dome-shared (and to a lesser 
extent, the entirety of any) selectivity pattern) (Butterworth and Punt, 
1990) and the consequences of model misspecification. Thompson 
(1994) showed that estimating selectivity and M simultaneously is 
particularly problematic when the selectivity pattern is dome-shaped. 
Hamel (2007) estimated M = 0.07 yr-1 for darkblotched rockfish when 
the steepness of the Beverton-Holt stock-recruitment curve was fixed, 
but = 0.10 yr-1 when that parameter was estimated along with M. 
However, the overall scale of the stock and the catch advice was similar 
between the two models. Estimates of M from any catch curve approach, 
including integrated analysis, are vulnerable to trends in recruitment 
which are in turn affected by steepness. 

Model misspecification is common in stock assessments and the es
timate of M can be biased if the assessment model is misspecified 
(Szuwalski et al., 2018). Misspecification can arise for many reasons, 
including a failure to correctly represent the true spatial and stock 
structure in the population dynamics, use of incorrect assumptions 
regarding functional relationships, in particular selectivity, and whether 
catchability is time-varying. Szuwalski et al. (2018) show that esti
mating time-varying M when it is actually time-invariant can “address” 
retrospective patterns caused by other parameters being time-invariant 
but assumed to be time-dependent. Data weighting remains a key 
challenge for ‘integrated’ assessment methods with multiple data types 
(and complex models with many parameters), although some guidance 
is available (Maunder et al., 2017). Incorrect assumptions regarding 
data weighting will lead to incorrect estimates of the precision of esti
mates of management quantities, including M. Perhaps more seriously, 
assumptions related to data weighting exacerbate the problems that 
arise from model misspecification. 

2.4.2. Fitting population models to multiple sources of information 
An advantage of integrated assessment methods is that multiple data 

types and sources of information can be analysed simultaneously (e.g., 
Maunder and Punt, 2013), potentially allowing the assessment to more 
realistically capture the underlying population dynamics (e.g., by using 
spatially structured population dynamics models with several 
time-varying parameters). However, complex assessments involve many 
assumptions, which can lead to model misspecification. Each of the 
major stock assessment packages have different features, and hence 
advantages and disadvantages. It is beyond the scope of the current 
paper to contrast these packages and provide information on when they 
are appropriate to use, but this information is available in summary form 
in Punt et al. (2020) and at the web-site (http://toolbox.frdc.com.au/; 
Dichmont et al., 2021). 

An advantage of integrated methods is that it is possible to include 
the methods outlined above into an analysis with multiple data types. 
Integration of multiple data sources (e.g., tagging data) into the stock 
assessment model allows information other than those data (e.g., catch- 
at-age data) to provide information on M. Alternatively, as with other 
approaches, priors can be used to transfer information on M from, say, 
an external tagging analysis or life-history covariates into the stock 

assessment model. Care is needed to ensure consistency between the 
external analyses and the stock assessment (e.g., assumptions about 
selectivity) and to prevent the loss of information, potentially on other 
model parameters, when data are used in the external analysis rather 
than being integrated into the stock assessment (Maunder, 2001). For 
example, tagging data have been integrated into stock assessment 
models that estimate M (e.g., Maunder, 1998; Hampton and Fournier, 
2001) and are now included in the likelihood component of three 
commonly used general stock assessment models, MULTIFAN-CL 
(Hampton and Fournier, 2001), CASAL (Bull et al., 2012), and Stock 
Synthesis (Methot and Wetzel, 2013). 

2.4.3. Performance 
As is the case for the other methods, it is hard to evaluate the ability 

of assessment methods to estimate M within an assessment because the 
true value is not known for actual cases. Two generic approaches have 
been used. The first is to report the precision (or perceived precision) of 
estimates of M for actual stocks, and the second is to use simulation 
studies to determine when it possible to reliably estimate M. 

2.4.3.1. Perceived precision of M. The perceived precision of the esti
mates of M depends on how the assessment is specified, with lower 
(perceived) variance when more parameters are pre-specified, and there 
is considerable variation in how precise estimates of M from assessments 
can appear to be. 

For example, Cappo et al. (2000) estimated M for Australian 
“salmon” Arripis truttaceus using a multi-area age-structured model fitted 
to tag recapture data by age. Best estimates of annual survival rates were 
precise (0.54 ± 0.043 for mature fish and 0.74 ± 0.024 for juveniles). 
Candy et al. (2011) estimated M (independent of age and time) for 
Patagonian toothfish (Dissostichus eleginoides) using an age-structured 
population model for tagged animals, along with a likelihood for the 
catch-at-age and number of recaptures by age over time (the CCODE 
method of Candy, 2011). Unlike Cappo et al. (2000), the estimate of M, 
while plausible (0.155 yr-1), was very imprecise (95% confidence in
terval 0.055–0.250 yr-1). Given the variation in how assessments are 
specified, and which parameters are estimated or fixed, the level of 
precision coming out of an assessment does not directly indicate the 
quality of the estimate. 

2.4.3.2. Simulation studies. Many simulation studies have been under
taken (see Table 1 of Punt et al., 2021). Unfortunately, there is still little 
generic understanding of the likely quality of estimates of M from in
tegrated assessments, except that performance tends to be better when 
the assessment is not misspecified and with higher quality and more 
informative data. Of the many simulation studies, the following provide 
an illustration of the types of results obtained to date. 

• Aanes et al. (2007) found that estimates of M tend to be over
estimated when the true value is low and vice versa using simulations 
based on Northeast Arctic cod (Gadus morhua).  

• Fu and Quinn (2000) explored whether data for pink shrimp were 
able to estimate time-variation in M, the length-at-50% selectivity 
(L50), and catchability within the context of a size-structured popu
lation model fitted to survey biomass, length-frequency, and catch 
data. They found that inter-annual variation in M and L50 could be 
estimated reliably, but only if catchability was assumed 
time-invariant and known. This result is surprising and may be a 
consequence of growth also being assumed to be known with selec
tivity assumed to be asymptotic.  

• Lee et al. (2011) explored whether it is possible to estimate M when 
the assessment model is correctly specified based on data for 12 US 
West Coast groundfish stocks. The estimates of M were in most cases 
quite accurate (bias < 5%). However, in some cases, the estimates 
were very biased, despite the model mimicking the assumptions in 
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the simulation. For example, the “true” value of M used for sablefish 
(Anoplopoma fimbria) was 0.07 yr-1 but the median estimated value 
was 0.051 yr-1, i.e., a negative bias of 30%. Lee et al. (2011) noted 
that the simulated data were conditioned on the original value of M 
and had no patterns in the residuals (as is common with most 
simulation studies). They concluded that if a simulation analysis 
shows that M can be estimated with reasonable precision and accu
racy, unrealistic estimates of M are a good indication of severe model 
misspecification (e.g., use of asymptotic selectivity when selectivity 
is actually dome-shaped, misspecification of growth parameter 
values and the extent of variation in recruitment). This concept was 
formalized by Piner et al. (2011).  

• Maunder and Wong (2011) used simulation to evaluate whether it is 
possible to estimate M (by sex) for US mid-Atlantic summer flounder 
(Paralichthys dentatus). They found that if correctly specified, the 
stock assessment model was able to estimate both female and male M 
with reasonable precisions but with a positive bias when true M was 
low, and a negative bias when true M was high. When applied to the 
actual data for US mid-Atlantic summer flounder, Maunder and 
Wong (2011) found that the estimates of M were quite sensitive to 
other assumptions of the model.  

• Murphy et al. (2018) estimated M by sex, maturity state and time for 
eastern Bering Sea snow crab (Chionoecetes opilio) using a 
size-structured population dynamics model within the context of a 
random effects estimation framework. The estimates of time-varying 
M were surprisingly precise, and the fits to the data were almost 
perfect, suggesting that overfitting may have occurred. 

2.4.4. Fitting population models using consumption information 
Predation is a major component of M, particularly for juvenile fish. 

Predation estimates can be used to estimate M, or at least that compo
nent of M that can be attributed to predation. Several approaches have 
been developed to include predation into assessment models. The 
simplest approach is to include a covariate for M into the stock assess
ment based on predation information. For example, Methot (1989) 
modelled anchovy M as time-varying given time-series for the biomass 
of Pacific mackerel and Livingston and Methot (1998) incorporated 
predation into a population assessment model of eastern Bering Sea 
walleye pollock. Hollowed et al. (2000) allowed for more complex 
predator-prey relationships and uncertainty in predation mortality for 
Gulf of Alaska walleye pollock. 

Predation sources based on diet information is one way to drive 
improved estimation of natural mortality. Another, less commonly 
addressed issue is mortality on predators due to the lack of prey. This may 
be particularly important for juvenile fish. Hoenig et al. (2017) note that 
lack of suitable prey may result in greater vulnerability to disease and 
may play a role in affecting natural mortality. Trochta et al. (2021) 
tested methods for detecting disease and sudden mortality events in 
Pacific herring. They found that time-varying mortality from disease 
could be estimated reliably. 

2.4.4.1. Extended single-species assessment methods. Perhaps the 
simplest way to jointly model multiple stocks, and hence the interaction 
among them, is the approach of using correlated processes among stocks 
(Albertsen et al., 2017). However, most multispecies models are based 
on an explicit component for predation (and perhaps competition). The 
most common way to allow for multi-species effects in stock assessments 
is to treat M as the sum of a residual (or basal) rate of natural mortality 
and to add predation mortality to it, i.e.: 

Mi
y,a = Mi,residual

a +
∑

j
Mi,j

y,a (3)  

where Mi
y,a is the rate of natural mortality for animals of species i (the 

stock being assessed) and age a during year y, Mi,residual
a is the residual 

natural mortality (i.e., mortality to due causes other than predation by 
the species included in the model such due to starvation and disease, and 
predation due to predators not included in the model) for animals of 
species i and age a, and Mi,j

y,a is the rate of natural mortality for animals of 
species i and age a during year y due to predator j. Livingston and Methot 
(1998) modelled Mi,j

y,a as the product of the number of predators of 

species j during year y, Ej
y, and a “catchability’ coefficient, qi,j

a , i.e. Mi,j
y,a =

qi,j
a Ej

y. Hollowed et al. (2000) extended this basic approach by scaling the 
predation mortality for a predator by the ratio of its consumption rate in 
year y to its consumption saturation point. The model developed by 
Hollowed et al. (2000) allowed for uncertainty in predator numbers and 
was fitted to conventional data sources such as survey index data as well 
as fishery and survey catch proportion-at-age data, but also to data on 
predation per unit of predator effort and predator diet data. Hollowed 
et al. (2000) also estimated the residual natural mortality rates for ages 1 
and 3 +, with that for age 2 set to the average of that for ages 1 and 3. 

2.5. Multi-species assessment methods 

The first stock assessment method that explicitly modelled the dy
namics of multiple species was multispecies Virtual Population Analysis 
(MSVPA; Gislason and Helgason, 1985; Sparre, 1991; Magnusson, 
1995). This approach uses diet data to estimate predator suitabilities 
and hence predation mortality. The process of calculating the 
numbers-at-age matrix involves applying the standard VPA back
calculation process based on the predation mortalities from a predation 
model, updating the predation mortalities based on the results of the 
VPA backcalculation process, and iterating these steps until conver
gence. In common with standard single-species VPA, this approach re
quires estimates of catch-at-age for all years (and species) and assumes 
that the catch-at-age (and diet) data are measured with negligible error. 

Several integrated multispecies stock assessment methods have been 
developed based on the predation model on which MSVPA is based (e.g., 
Jurado-Molina et al., 2005, 2006; Kinzey and Punt, 2009; Van Kirk et al., 
2010; Curti et al., 2013; Ross-Gillespie, 2016; Holsman et al., 2016; 
Trijoulet et al., 2019). These methods make use of the stomach content 
data for parameter estimation and differ in terms of how predation 
mortality is modelled and parameterized. In general, the inclusion of 
predation mortality in population dynamics models increases the rate of 
natural mortality for younger animals, with the result that estimates of 
recruitment from multi-species models are usually markedly higher than 
from single-species models. 

Multispecies assessment methods are very data-intensive compared 
to traditional single-species methods owing to their need for data on 
predator rations, and depending on the model, data on the proportion of 
prey by age in the diets of predators by age. This limits the jurisdictions 
in which these types of models can be applied to data-rich stocks with 
surveys that permit the collection of diet data. The aim of a multispecies 
assessment is that the residual mortality rate (Mi,residual

a in Eq. 3) is as 
small as possible. For example, the multispecies model developed by 
Punt and Butterworth (1995) to examine the impact of predation by 
Cape fur seals (Arctocephalus pusillus pusillus) on catches of the Cape 
hakes (Merluccius capensis and M. paradoxus) aimed to capture 95% of 
the mortality on large hake. This was possible in that case owing to the 
high levels of cannibalism and inter-species predation among the two 
species of Cape hake. However, it is seldom straightforward to deter
mine how many species to include in a multispecies model given that 
including more species increases realism but also the complexity of the 
model and associated parameter estimation scheme, as well as the data 
requirements. Models of Intermediate Complexity for Ecosystem 
Assessment (MICE) (Plaganyi et al., 2014) attempt to achieve an 
appropriate balance between complexity and realism given the 
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objectives of the model, and represent a way to more fully integrate 
multispecies models in tactical management applications. 

2.6. Other approaches 

2.6.1. Direct estimation 
It is possible to estimate M for sedentary species by direct observa

tion. For example, McShane and Naylor (1997) estimated M for New 
Zealand abalone (Haliotis iris) by monitoring enclosed populations and 
counting shells. Macpherson et al. (2000) estimated M for five fish 
species based on direct measurements at a Marine Reserve off eastern 
Spain. 

Natural mortality can also be estimated from electronic tags using 
arrays of detectors (e.g., in salmon) or archival tags that can detect 
mortality events. (Starr et al., 2005; Patterson and Pillans, 2019; 
Topping and Szedlmayer, 2013). This method is not applicable to most 
species owing to the need to be able to track individual animals and 
assign changes in population numbers to natural mortality, rather than 
say, migration. However, acoustic telemetry tagging is seeing increased 
usage (e.g., Peterson et al., 2021; Lees et al., 2021) and can provide good 
information about M if enough receivers are deployed. Acoustic tagging 
does not suffer from the human reporting issues of conventional tagging, 
but incomplete detection is an issue, which has been addressed by 
Pollock et al. (2004). The potential for estimating M for more stocks will 
increase as the availability of large-scale receiver arrays increases. 

2.6.2. Inferences from rates of increase 
Smart et al. (2018) estimated natural survival for juvenile grey reef 

shark (Carcharhinus amblyrhynchos) to be 0.72 (95% credibility in
tervals, 0.66–0.79; Great Barrier Reef) and 0.78 (95% credibility inter
val, 0.70–0.85) based on fitting a demographic model to data on 
increase rates within a Bayesian estimation framework. 

3. Variation by age, sex, time, and other factors 

Vetter (1988) concluded that M is not constant for many fish stocks 
and that this variability is extensive enough that it should not be 
ignored. M is not a single constant across time, age, and gender. At a 
minimum, M should be considered to be higher for young individuals, 
increase for old individuals, and differ between genders. Although there 
have been few studies that have reliably estimated age and/or 
sex-specific M, such a general practice is advisable. 

3.1. Age-specific natural mortality 

Vetter (1988) suggested that assessments should use age-specific M 
to avoid bias, a view supported by Beverton and Holt (1959) based on 
age-based catch curves. It is well known that fish, with their high 
fecundity, are among the types of animals that exhibit Type III survi
vorship curves. M is highest for young individuals due to predation and 
physiological processes (Hjort, 1914; Cushing, 1975a). Based on the 
observation that the exponents in Eqns T2.3.7 and T3.3.20 are approx
imately equal to − 1/3, Lorenzen (2000) suggested that M is inversely 
proportional to length. The results from stocked fished studies (Lor
enzen, 2000) indicate that the coefficient may vary among populations, 
and therefore it may need to be estimated for each population. Direct 
measurement of age-specific M is generally not feasible in marine sys
tems, except where young fish have been tagged. Hampton (2000) 
demonstrates estimation of age-specific M for tropical tunas using 
mark-recapture data. 

Fortunately, it is often (but not always, Rindorf et al., 2020, 2022) 
not critical for estimation of fishery management quantities to model M 
for young individuals that have low selectivity to the fishery. This is 
because it is only the survival of fish into the first fished ages that must 
be quantified. However, some situations require accurate estimates of M 
for young ages, such as Pacific bluefin tuna (Thunnus orientalis), which 

are caught at substantial numbers as young of the year (Ichinokawa 
et al., 2010) and red snapper in the Gulf of Mexico where the impact of 
substantial bycatch of juveniles is highly confounded with age-specific 
(Gallaway et al., 2017) and density-dependent M (Gazey et al., 2008; 
Forrest et al., 2013). 

Brodziak et al. (2011) advocate for the modelling of age-specific M 
being a good practice for fish stock assessments. This option is available 
in Stock Synthesis (Methot and Wetzel, 2013) and other assessment 
frameworks (e.g. Harley and Maunder, 2003). Age-specific M has been 
modelled using a piecewise linear function in assessments for Antarctic 
minke whales Balaenoptera bonaerensis (Punt et al., 2014) and bigeye 
(Thunnus obesus) and yellowfin (Thunnus albacares) tuna in the Pacific 
Ocean (e.g., Xu et al., 2020; Minte-Vera et al., 2020). Stock Synthesis’ 
implementation of Lorenzen M is commonly employed in assessments in 
the U.S. Southeast region. Tagging data can be used to directly inform 
estimation of age-specific M by including age-specific M and 
mark-recapture analysis in an integrated assessment model such as Stock 
Synthesis. Such integrated analyses also aid in the disentanglement of 
age-specific M from age-specific fishery selectivity. 

Relationships such as Lorenzen (1996) and McGurk (1987) do not 
allow for an increased M for older individuals. Senescent mortality may 
occur due to the declining ability to respond to stress, increasing ho
meostatic imbalance, increased risk of disease and parasitism, and 
decreasing ability to repair biological damage in older individuals 
(Fonteneau and Pallares, 2005). Chen and Watanabe (1989) propose an 
equation for age-specific natural mortality that represents three phases: 
initial death rate, stable death rate, and death due to senescence, which 
correspond to three phases of growth. By relating M to growth, they use 
the parameters of the von Bertalanffy equation to estimate age-specific 
M. Similarly, Siler (1979) provided a flexible model of survival that 
can be used to model high M for both young and old individuals. Siler’s 
(1979) function includes components for immature individuals, mature 
individuals, and senescence: 

Mt = a1exp[ − b1t] + a2 + a3exp[b3t] (4) 

The values for the five parameters are not provided and need to be 
assumed or estimated (e.g., Punt et al., 2014). The first term in Eq. (4) 
could be replaced with, for example, Lorenzen’s (1996) or Gulland’s 
(1987) models if they are considered more appropriate representations 
of immature mortality. Lehodey et al. (2008) used the same term for 
mortality of immature animals (predation) but combined it with a lo
gistic function for senescence: 

Mt = a1exp[ − b1t] +
a2

1 + exp[b2(t − a50)]
(5)  

where a50 is the age at which 50% of the senescence mortality occurs. 
Eq. (5) differs from Eq. (4) in that the M levels off at old ages, which is 
consistent with M increasing for mature individuals since the proportion 
mature is often modelled using a logistic curve. However, Eq. (5) does 
not account for senescence at old ages. 

Maunder (2011) developed a model for age- and sex-specific M based 
on five assumptions: 1) M for younger fish is due mainly to processes (e. 
g., predation) that are functions of the size of the individuals; 2) M in
creases after individuals become reproductively mature; 3) maturity 
follows the logistic curve (refined in Appendix A); 4) M due to repro
duction may differ by gender, but juvenile M is independent of gender; 
and 5) M due to senescence over and above that caused by reproduction 
is either small or occurs at an age for which there are few fish alive, so it 
is not influential. The model is based on combining Lorenzen’s (2000) 
observation that M is inversely proportional to the length for young fish 
and Lehodey et al.’s (2008) logistic model for older fish (see Appendix A 
for a revised version of the model). This model has been applied recently 
to the stock assessment of albacore tuna (Thunnus alalunga) in the South 
Pacific Ocean (south of the equator), incorporating the Convention areas 
of the Western and Central Pacific Fisheries Commission (WCPFC) and 
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the Inter American Tropical Tuna Commission (IATTC) (Castillo-Jordan 
et al., 2021). 

3.2. Sex-specific natural mortality 

There is ample evidence from sex ratios-at-age that M differs between 
males and females for many stocks (e.g., Maunder and Wong, 2011), 
with males often having the higher rates (Beverton and Holt, 1959). 
Some tuna species are notable exceptions in that female M appears to 
increase after they become mature (Cushing, 1975b), a fact Watters and 
Maunder (2001) associate with the higher physiological costs of repro
duction (also see Appendix A). Hoenig and Hewitt (2005) present 
several models for analysing sex ratio data showing that sex ratio in
formation can provide sex-specific estimates of mortality in some cases 
and in others can allow estimation of the difference in mortality rates 
between the sexes (though we note that either differential fishing mor
tality or differential natural mortality may be the cause). There are many 
examples of stock assessments where different values are pre-specified 
(e.g., Hamel et al., 2013; Lee et al., 2014) or estimated (e.g., Cope 
et al., 2016; Thorson and Wetzel, 2016; Haltuch et al., 2017) for males 
and females. Note that sex-specific M is confounded with 
selectivity-at-age, and differentiating between the two phenomena is 
challenging (e.g., Cope et al., 2016). 

3.3. Time-varying natural mortality 

Most models that estimate M assume it to be a constant over time, 
perhaps with some age-dependency. Exceptions to this include assess
ments that account explicitly for predation mortality. Time-varying M 
has been included in stock assessments using covariates (e.g., Marty 
et al., 2003; Deriso et al., 2008) and as random effects. Increasingly, 
time-variation in M is being included in state-space stock assessment 
models either directly (e.g., Swain and Benoît, 2015; Cadigan, 2016; 
Stock and Miller, 2021) or indirectly (Gudmundsson and Gunnlaugsson, 
2012; Nielsen and Berg, 2014; Berg and Nielsen, 2016; Perreault et al., 
2020; but see Aldrin et al., 2019), including in the Bayesian methods 
developed by Millar and Meyer (2000), Lewy and Nielsen (2003) and 
Aanes et al. (2007). The extent of time-variation in M is constrained by a 
regularization or distribution-based penalty in these methods. 

Aanes et al. (2007) and Aldrin et al. (2021) found that trends in M 
tend to be estimated better than the absolute value for M. Information on 
temporal variability in M can be identified when there are changes in the 
slopes of cohort-catch curves that cannot be accounted for by reported 
catches (e.g., Wiedenmann and Legault, 2022). This is consistent with 
how time-varying M (constant over size) is estimated for Bristol Bay red 
king crab (Paralithodes camtschaticus) and St Matthew Island blue king 
crab (Paralithodes platypus) where the baseline value for M is 
pre-specified rather than being estimated (e.g., Palof et al., 2019; Zheng 
and Siddeek, 2019). Allen et al. (2017) explored the performance of a 
cohort reconstruction model for salmon populations including some in 
which M was separable into age and time components and others in 
which M by age and time was estimated. 

The assessment of walleye (Sander vitreus) in Saginaw Bay has 
traditionally been based on analysis of tag returns. Fielder and Bence 
(2014) developed an assessment method that integrated multiple sour
ces of data, including tagging data and explored three treatments of M: 
(a) constant, (b) age-specific, and (c) time-varying. The tagging data 
were found to be inconsistent with the fishery data, likely due to the 
dynamics of the tagged population differing from that of the entire 
population. Model selection was accomplished using the Deviance In
formation Criterion (DIC), with age-varying M selected. 

Jiao et al. (2012) developed an age-structured statistical catch-at-age 
model that allows for a variety of formulations for age- and 
time-variation in M. The model was fitted using Bayesian methods and 
DIC was used for model selection. Jiao et al. (2012) also tested whether 
model fits were improved by linking time-varying M to environmental 

covariates. Their results suggested that temporal variation in natural 
mortality was more important than age-specific natural mortality. 

Recently, condition information has been used to provide estimates 
of a component of M (Casini et al., 2016; Björnsson et al., 2022; Regular 
et al., 2022), or provide an index of M (Varkey et al., 2022; Cadigan 
et al., 2022). This is a data type that is easy and often routinely collected, 
although determining critical condition values when starvation occurs 
may be a challenge if starvation experiments are not practical. 
Density-dependence may also lead to temporal variation in M. Density 
dependence may involve the effects of cannibalism and dilution of 
predation mortality by large year classes or recruits (e.g., Rindorf et al., 
2020; Rindorf et al., 2022). 

4. Discussion 

The value of M is generally highly influential on quantities that are 
important for providing management advice (see Punt et al., 2021). 
Therefore, given the uncertainty surrounding the estimation of M, many 
stock assessments include sensitivity analyses to the (assumed) value for 
M. For example, assessments often bracket uncertainty by providing 
results for different levels of M (e.g., Hamel, 2007; Hamel et al., 2013; 
Haltuch et al., 2013). However, sensitivity analysis requires some notion 
of relative plausibility of the different levels of M. A sensitivity analysis 
using a value for M that is unrealistic is unhelpful for management 
purposes. For example, Hamel et al. (2013) profiled over values from 
0.01 to 0.10 yr-1 for aurora rockfish (Sebastes aurora), which includes 
both unrealistically low and high values for this species, and therefore 
may be misleading or uninformative at the extremes. The relative 
probability of a series of values for M can be calculated based on the fit to 
the data, although this is essentially the same as estimating M within the 
assessment, while providing a credibility interval. Bayesian analysis can 
be used to evaluate the relative probability of different values of M by 
combining prior information (e.g., from indirect or direct estimates of 
M) with the data used to fit the stock assessment model. This would 
require uncertainty estimates for the indirect estimates of M so that the 
appropriate priors could be developed (e.g., Hamel, 2015; Hamel and 
Cope, 2022). 

Management of some species is very sensitive to the value of M 
because the management rules are based on both fishing mortality rates 
and stock status determinations. For example, many groundfish stocks 
are managed based on rules that decrease the target fishing mortality 
rate when the biomass is below a target level (e.g., Punt et al., 2008; 
Anon, 2019). Since both the estimated target biomass and fishing mor
tality depend on M, lower levels of assumed or estimated M often mean 
that the estimated target fishing mortality is lower and the target 
biomass is higher, leading to a ‘doubling’ effect on allowable catches. 

Analysis of tagging data, particularly genetic (close kin) tagging 
(Bravington et al., 2016a), is probably the most promising direct method 
to estimate M for stocks for which adequate funding is available to 
conduct a well-designed study. However, it is difficult and expensive to 
design and implement a traditional tagging study that addresses all the 
issues that can bias the results. Even in data-rich cases there is debate 
whether the estimates of M are reliable (Cadigan, 2016; Rose and Wal
ters, 2019; Regular et al., 2022). 

4.1. Good practices for M in assessments 

Although many new methods for estimating M have been developed 
since Vetter (1988) outlined the main concerns over three decades ago, 
many of these concerns remain. The same traditional methods based on 
violated assumptions and unreliable data are still used even though 
Vetter (1988) concluded that all methods have limitations or disad
vantages. Attempts to estimate M inside stock assessment models, 
although much more common than in the past, are often unsuccessful. 
Consequently, M and its variability are still very poorly known for even 
the most studied fish stocks that have been subject to continuous 
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exploitation for decades. M is frequently assumed to be constant over 
age, gender, or time even though this is unlikely. Unfortunately, the 
values of M often become institutionalized mainly from customary use 
(Zhang and Megrey, 2006). This section offers some suggestions for 
“good practices”, recognizing that the field is not yet really in a position 
to establish “best practices”. 

Many values for M used in assessments remain based on life history 
theory, maximum age, and regression (LHMR) approaches. There will be 
cases when LHMR methods are more reliable than direct estimates and 
the results of stock assessments. However, LHMR methods should be 
used only if more direct estimates or stock assessment internal estimates 
are unavailable or unreliable (which, admittedly, is most of the time). If 
they are to be used, they should be accompanied by measures of un
certainty (e.g., Cope and Hamel, 2022; Hamel and Cope, 2022), which 
should be propagated into the results of the assessment either directly 
through Bayesian or related approaches, or through sensitivity analyses 
and profiles. Catch curve analyses, while crude and dependent on many 
assumptions that are likely to be violated, should be considered and 
compared to LHMR methods, especially when multiple years of 
catch-at-age data are available from the start of fishing or from unfished 
populations. However, it is preferable to integrate the catch-at-age data 
into the assessment and estimate M. This ensures that the assumptions 
used to estimate M are consistent with those used in the assessment, so 
that all data sources inform M, and that uncertainty is effectively rep
resented. As noted in Section 2.4, integrating multiple data sources 
within a single framework is not a panacea and it is easy to envisage 
situations when the estimate of M from a single maximum age-based 
approach will be less biased that the estimate of M from a mis
specified integrated assessment. 

Estimating M inside the assessment model may allow estimation of a 
wider range of sampling processes (e.g., selectivity) that may improve 
bias and precision of estimated quantities. Data conflicts can be evalu
ated within an integrated stock assessment model using likelihood 
component profiling (Beyer-Rogers et al., 1997; Maunder and Starr, 
2001; see Perreault and Cadigan (2021) for cases with random effects) 
on M and other approaches (Carvalho et al., 2017, 2021). This method 
can be more appropriate than independent analyses because it is con
ducted within the same framework and is therefore not dependent on 
the assumptions of the independent analyses. Nevertheless, it remains 
useful to analyse the data sets independent of the integrated model to 
obtain additional insights into the data and assumptions, and to evaluate 
the possibility that the integrated model is misspecified and the esti
mates of M biased. 

Careful repeated tagging/marking experiments probably hold the 
most promise for determining M with any reasonable degree of accu
racy. However, it is difficult and expensive to design and implement a 
tagging study that addresses all the issues that can bias the results. The 
development of integrated analyses (Fournier and Archibald, 1982; 
Methot, 2009; Maunder and Punt, 2013; Punt et al., 2013) that allow the 
inclusion of multiple types of data into the stock assessment, including 
tagging data (e.g., Maunder, 1998, 2001, 2004; Hampton and Fournier, 
2001; Goethel et al., 2011) along with more recent tagging-based 
methods (e.g. Hoenig et al., 1998a; 1998b, Myers and Hoenig, 1997, 
Jiang et al., 2007a; b) may allow relaxation of some of the violated as
sumptions required for historical methods for analyzing tagging data. 
Integrated analysis also allows other information (e.g., catch-at-age 
data) to provide information about M in addition to the information in 
the tagging data, which may lead to lead to improved estimates. This 
suggests that integrated analysis with tagging data should be the gold 
standard for fisheries stock assessment of exploited fish stocks. However, 
care should be taken to check for model misspecification, which can lead 
to an artificial perceived ability to estimate M, and to apply appropriate 
weights to each data type. Conducting a tagging-only analysis using a 
more recent tagging-based method is one way to potentially identify 
model misspecification in a complex integrated assessment. Finally, 
close-kin tagging is a promising method that may provide the best 

estimates of M. This is mainly because the approach avoids some of the 
common assumptions required in traditional tagging studies. 

We see the value for using multi-species models to estimate M (and 
its variation with age and time), but recognize that the age-classes 
subject to predation by monitored species are often those that have 
yet to recruit to the fishery such that estimates of quantities of man
agement importance such as spawning stock biomass are often very 
similar between conventional assessment methods and those that ac
count for predation mortality (e.g., Kinzey and Punt, 2009; Holsman 
et al., 2016; Adams et al., 2022). Yet we note that the parameter con
trolling the degree of density-dependence in spawner-recruitment is 
equally difficult to estimate (Lee et al., 2012; Thorson et al., 2019), and 
with multiple fished species of predators preying on juveniles, perhaps 
more insight on spawner-recruitment curvature can come from 
multi-species models through, for example, explaining temporal varia
tion in recruitment (Rossberg et al., 2013). 

The success of estimating M within a stock assessment model varies 
among stocks and depends on the amount and type of data that are 
available, the assumptions that are made in the assessment, and how M 
is modelled. Data used in other approaches to estimate M can be 
included in stock assessments, and the stock assessment approach more 
appropriately identifies and deals with model assumptions, improves 
consistency, and propagates error. This automatically allows total 
mortality to be split into fishing and natural mortality since catch is also 
integrated into the assessment. Information from indirect methods or 
other species can be included in the assessment model using priors. This 
requires estimating the uncertainty in the estimates of M (Hamel and 
Cope, 2022; Cope and Hamel, 2022) and is probably the best way to 
force analysts to think about how reliable their indirect estimates of M 
really are. The assessment model will then update the estimates of M 
based on the information available in the data used in the assessment 
model. 

Variability in M with age, gender, time, and other factors may be 
influential on management advice and has yet to be dealt with as a 
generally accepted approach. In particular, it is important to include 
age-specific M in an assessment model when some fisheries catch much 
younger fish than other fisheries (Gallaway et al., 2017). Collection of 
sex-composition data has identified that sex-specific differences in M are 
common and can be used as the basis to estimate sex-specific M (e.g., 
Maunder and Wong, 2011), highlighting the importance of collecting 
sex-composition data. 

It is advisable to use a variety of approaches to estimate M (Quinn 
and Deriso, 1999; Cope and Hamel, 2022; Höffle and Planque,). We 
suggest that for each species assessed, a comprehensive evaluation of M 
should be undertaken (e.g., Maunder and Wong, 2011). For example, 
Hewitt et al. (2007) provided an extensive evaluation of M for Ches
apeake Bay blue crab Callinectes sapidus. They compared estimated 
survival rates from tagging data using a Brownie model and separated 
out M by estimating exploitation rates from catch and survey estimates 
of abundance. These were compared with indirect methods based on 
empirical relationships and life history theory. The estimates from 
tagging data, indirect methods, and from an assessment model (Miller 
et al., 2005) were higher than previous estimates that were based on 
conservative assumptions about maximum age. 

Unfortunately, irrespective of how estimation of M is addressed in 
the assessment and how much data are available for estimation pur
poses, some uncertainty in M will remain. Best practices for addressing 
this uncertainty include (a) capturing estimation uncertainty to 
maximum extent possible, e.g. by estimating M with a prior and hence 
representing uncertainty in M in the posteriors for model outputs or 
including M as an axis of uncertainty in ensembles (Maunder et al., 
2020), (b) accounting for uncertainty in M when setting scientific un
certainty buffers (e.g. within the US deciding on the size of the buffer 
between the overfishing level and the acceptable biological catch, e.g. 
Monk et al., 2018), (c) providing decision makers with ‘decision tables’ 
that show the sensitivity of assessment outcomes to uncertainty in M (e. 
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g. Monk et al., 2018), and (d) using management strategy evaluation 
(Punt et al., 2016) to identify harvest strategies that are as insensitive to 
uncertainty in M as possible. 

4.2. Future research 

Despite some progress in improving methods to represent and esti
mate M either inside or outside the stock assessments, there is sub
stantial work to be done. The ultimate goal is to provide management 
advice for exploited fisheries. Therefore, evaluation of the reliability of 
methods for estimating M should be viewed in this context. Several 
studies have reviewed the current literature and evaluated the perfor
mance of a particular approach or group of approaches, and proposed an 
improved approach (e.g., Then et al., 2018). Other studies have tackled 
issues with a particular estimator (e.g., Hoenig, 2017), and others that 
have evaluated the consequences of estimation error in terms of man
agement advice (e.g., Punt et al., 2021). However, there has not been a 
comprehensive evaluation of the alternative approaches and their 
appropriateness for providing management advice. Here we have 
attempted to review the literature and provide guidance on the potential 
of different approaches when applied for stock assessment purposes. 

Further research is needed to determine the appropriateness of using 
the alternative approaches for the provision of management advice, 
particularly the representation of uncertainty and how this is taken into 
consideration in the advice provided to managers. The type of man
agement advice differs depending on the characteristic of the popula
tion, fishery, and management objectives. In addition, data availability 
will constrain the approaches that can be applied. Therefore, it is diffi
cult to provide thorough advice that covers all situations. However, 
integrated stock assessment models that provide stock status evaluations 
or evaluate harvest control rules are commonly applied and is an area 
that allows focused research. Only limited simulation studies to evaluate 
the performance of estimating M in integrated models have been con
ducted (e.g., Maunder and Wong, 2011; Lee et al., 2011; Aldrin et al., 
2021; Cronin-Fine and Punt, 2022). Some have evaluated more 
complicated forms of natural mortality such as age- or sex-specific 
formulation (e.g., Lee et al., 2011) and time-varying natural mortality 
(Aanes et al., 2007; Jiao et al., 2012). A more thorough simulation 
analysis is needed. This may require using a more complex operating 
model that includes multiple interacting species and environmental 
drivers. 

The sensitivity of data-limited stock assessments to uncertainty in M 
remains an area for exploration, though it is not uncommon to incor
porate wide priors and Monte Carlo simulation to incorporate uncer
tainty in M (Dick and MacCall, 2011, Cope 2013). This research should 

evaluate not only framework-specific data-limited approaches (e.g., 
LBSPR, DB-SRA), but also equivalently specified approaches in an in
tegrated model (e.g., Cope 2013; Rudd et al., 2021) and more fully 
specified integrated models that better represent the uncertainty. 

In conclusion, the fisheries science community should spend more 
effort on understanding and estimating fundamental population dy
namic process parameters, such as M, that are highly influential on 
management advice. We recommend using approaches that use all the 
available information and appropriately represent uncertainty. This 
essentially means estimating M in the assessment, using priors from 
indirect information (e.g., relationships with maximum age), and inte
grating direct information into the stock assessment. 
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Appendix A. A suggested model for natural mortality 

A general model for age- and sex-specific natural mortality that expands that developed by Maunder et al. (2009) and Maunder (2011), and is based 
on the assumptions outlined in the main text: 

Ms,a = Mjuv

(
Ls,a

Lmat*

)λ

+
Mmat,s − Mjuv

(
Ls,a

Lmat*

)λ

1 + exp
[
βs
(
Ls,a − L50,s

) ]

with the defaults λ = − 1.5 from Gulland (1987), βsandL50,s from the maturity curve, Mmat,s= 5.4/tmax ,s (Hamel and Cope, 2022) if tmax is available 
otherwise Mmat,s = 4.118 Ks

0.73Linfs-0.33 (Then et al., 2015) and Mjuv = 3W− 0.288
mat* from Lorenzen (1996), Lmat* and Wmat* are the length and weight of a 

fish when they first become mature for either sex (could be set at the minimum length over both sexes when 5% of the fish are mature) or some other 
convenient corresponding length and weight of a fish before it becomes mature. 
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Björnsson, B., Sólmundsson, J., Woods, P.J., 2022. Natural mortality in exploited fish 
stocks: annual variation estimated with data from trawl surveys. ICES J. Mar. Sci. 

Bravington, M.V., Skaug, H.J., Anderson, E.C., 2016a. Close-kin mark-recapture. Stat. 
Sci. 31, 259–274. 

Bravington, M.V., Grewe, P.M., Davies, C.R., 2016b. Absolute abundance of southern 
bluefin tuna estimated by close-kin mark-recapture. Nat. Commun. 7, 13162. 

Brodziak, J., Ianelli, J., Lorenzen, K., Methot Jr. R.D., (eds). 2011. Estimating natural 
mortality in stock assessment applications. U.S. Dep. Commer., NOAA Tech. Memo. 
NMFS-F/SPO-119, 38 p. 

Brownie, C., Anderson, D.R., Burnham, K.P., Robson D.S., 1985. Statistical inference 
from band-recovery data—a handbook, 2nd edition. U.S. Fish and Wildlife Service 
Resource Publication 156. 

Bull, B., Dunn, A., McKenzie, A., Gilbert, D.J., Smith, M.H., Bian, R., Fu, D., 2012. CASAL 
(C++ algorithmic stock assessment laboratory) User Manual v2.30–2012/03/21. 
NIWA Technical Report 135. National Institute of Water and Atmospheric Research, 
Wellington, 280 p. 

Butterworth, D.S., Punt, A.E., 1990. Some preliminary examinations of the potential 
information context of age-structure data from Antarctic minke whale research 
catches. Rep. Int. Whal. Commun. 40, 301–315. 

Cadigan, N.G., 2016. A state-space stock assessment model for northern cod, including 
under-reported catches and variable natural mortality rates. Can. J. Fish. Aquat. Sci. 
73 (2), 296–308. 

Cadigan, N.G., Robertson, M.D., Nirmalkanna, K., Zheng, N., 2022. The complex 
relationship between weight and length of Atlantic cod off the south coast of 
Newfoundland. Can. J. Fish. Aquat. Sci. xxx. 

Candy, S.G., 2011. Estimation of natural mortality using catch-at-age and age mark- 
recapture data: a multi-cohort simulation study comparison estimation for a model 
based on the Baranov equation versus of new mortality equation. CCAMLR Sci. 18, 
1–27. 

Candy, S.G., Welsford, D.C., Lamb, T., 2011. Estimation of natural mortality for 
Patagonian toothfish at Heard and McDonald Islands using catch-at-age and age 
mark-recapture data from the main trawl ground. CCAMLR Sci. 18, 29–45. 

Cappo, M., Walters, C.J., Lenanton, R.C., 2000. Estimation of rates of migration, 
exploitation and survival using tag recovery data for western Australian “salmon’’ 
(Arripis truttaceus: Arripidae: Percoidei). Fish. Res 44, 207–217. 

Carvalho, F., Punt, A.E., Chang, Y.-J., Maunder, M.N., Piner, K.R., 2017. Can diagnostic 
tests help identify model misspecification in integrated stock assessments? Fish. Res. 
192, 28–40. 

Carvalho, F., Winker, H., Coutrtney, D., Kapur, M., Kell, L., Cardinale, M., Schirripa, M., 
Kitakado, T., Yemane, D., Piner, K., Maunder, M., Taylor, I., Wetzel, C., Doering, K., 
Johnson, K., Methot, R., 2021. A cookbook for using model diagnostics in integrated 
stock assessments. Fish. Res. 240, 105959. 
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